Event activity-dependence of jet production in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV measured with semi-inclusive hadron+jet correlations by ALICE

Filip Krizek
on behalf of the ALICE collaboration

Nuclear Physics Institute of CAS
krizek@ujf.cas.cz

February 6–11, 2017
QGP signatures in small systems

- Indication of collective effects in p–Pb
- What about jet quenching?
- Considerations
 - $\Delta E \propto \hat{q}L^2$
 - $\hat{q}|_{pPb} = \frac{1}{7}\hat{q}|_{PbPb}$
 - $\hat{q}|_{PbPb} = (1.9 \pm 0.7)\text{ GeV}^2/\text{fm}$
 - $\hat{q}|_{\text{Cold Nuclear Matter}} \approx 0.02\text{ GeV}^2/\text{fm}$
 - $\Delta E = (8 \pm 2_{\text{stat}})\text{ GeV}/c$ medium-induced E transport to $R > 0.5$ in Pb–Pb
 - ALICE, JHEP 09 (2015) 170
PHENIX jet R_{dAu} in $d+Au$ at $\sqrt{s_{NN}} = 200$ GeV

$$R_{dAu} = \frac{dN_{jets}^{\text{cent}}/d\rho_T}{T_{dAu} \cdot d\sigma_{pp}/d\rho_T}$$

- R_{dAu} for MB compatible with unity
- Strong effects on R_{dAu} with event activity (EA)

EA from BBC in Au-going direction

$3 < |\eta| < 3.9$
ATLAS jet R_{pPb} in p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

EA from E_T in Pb-going direction $-4.9 < \eta < -3.2$

- T_{pPb}, T_{dAu} assume EA correlated with geometry (Glauber modeling)

- Conservation laws and fluctuations

PHENIX, Phys.Rev. C90 (2014) 034902
Kordell, Majumder, arXiv:1601.02595v1
Hadron trigger ($|\eta| < 0.9$) selected as single inclusive

In events with a high-p_T trigger hadron analyze recoiling away side jets $[1,2]$

$$|\varphi_{\text{trig}} - \varphi_{\text{jet}} - \pi| < 0.6 \text{ rad}$$

Charged jets (tracks: $|\eta| < 0.9$, $0^\circ < \varphi < 360^\circ$, $p_T > 150$ MeV/c)

Given jet R, charged jet acceptance is $|\eta_{\text{jet}}| < 0.9 - R$

Background energy density ρ estimated by area-based method $[4]$

$$\rho = \text{median}_{k_t\text{jets}} \{p_{T,\text{jet}}/A_{\text{jet}}\}$$

event by event

$$p_{T,\text{jet}}^{\text{reco,ch}} = p_{T,\text{jet}} - \rho \times A_{\text{jet}}$$

Hadron-jet coincidence measurement

$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{T,jet}^\text{ch} d\eta} \bigg|_{p_{T,trig} \in \text{TT}\{20,50\}} - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{T,jet}^\text{ch} d\eta} \bigg|_{p_{T,trig} \in \text{TT}\{8,9\}}$

c_{\text{Ref}} accounts for invariance of the jet density with TT-class, ($c_{\text{Ref}} \approx 0.94$)

$TT = \text{trigger track}$

$TT\{X,Y\}$ means $X < p_{T,trig} < Y$ GeV/c

- Uncorrelated jet yield is independent of $p_{T,trig}$ by definition
- Uncorrelated yield removed at the level of ensemble-averaged distributions
- Data driven approach allows to measure jets with a large R and low p_T
Semi-inclusive hadron + jet observables and T_{AA}

Calculable at NLO pQCD \cite{1}

\[
\frac{1}{N_{trig}^{AA}} \frac{d^2 N_{jet}^{AA}}{dp_{T,jet}^{ch} d\eta_{jet}} \bigg|_{p_{T,trig} \in TT} = \frac{1}{\sigma_{AA \to h+X}} \cdot \frac{d^2 \sigma_{AA \to h+jet+X}}{dp_{T,jet}^{ch} d\eta_{jet}} \bigg|_{p_{T,h} \in TT}
\]

In case of no nuclear effects

\[
\frac{1}{N_{trig}^{AA}} \frac{d^2 N_{jet}^{AA}}{dp_{T,jet}^{ch} d\eta_{jet}} \bigg|_{p_{T,trig} \in TT} = \frac{1}{\sigma_{pp \to h+X}} \cdot \frac{d^2 \sigma_{pp \to h+jet+X}}{dp_{T,jet}^{ch} d\eta_{jet}} \bigg|_{p_{T,h} \in TT} \times \frac{T_{AA}}{T_{AA}}
\]

- This coincidence observable is self-normalized, no requirement of T_{AA} scaling
- No requirement to assume correlation between Event Activity and collision geometry, no Glauber modeling

\cite{1} D. de Florian, Phys.Rev. D79 (2009) 114014
\[\Delta_{\text{recoil}} \text{ in } Pb-Pb \text{ at } \sqrt{s_{NN}} = 2.76 \text{ TeV} \]

Fully corrected \(\Delta_{\text{recoil}} \) for different jet \(R \)

Suppression in recoil jet yield corresponds to a spectrum shift (energy transfer out of a jet cone) of \(8 \pm 2_{\text{stat}} \) GeV/c \[^{[1]}\].

[^{[1]}]: ALICE, JHEP 09 (2015) 170
Event activity in p–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Pb-going direction

ZNA

Charged track reconstruction

$|\eta| < 0.9$, $p_T > 150$ MeV/c

ITS 6-layered silicon tracker

TPC time projection chamber

Event activity assignment in p–Pb

- High-p_T track requirement (TT) biases event to larger EA
- Similar EA bias for TT 6–7 GeV/c and 12–50 GeV/c
Δ_{recoil} in $p-Pb$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Raw spectrum

- Δ_{recoil} in $p-Pb$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV
- ZNA 0–20%
- Anti-k, charged jets, $R = 0.4$
- $\pi - \Delta \varphi < 0.6$
- Integrated $TT\{12,50\}$: 1.83
- Integrated $TT\{6,7\}$: 1.82
- Δ_{recoil} ($c_{\text{Ref}} = 0.94$)

Fully corrected

- Δ_{recoil} in $p-Pb$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV
- $y_{\text{NN}} = -0.465$
- Δ_{recoil} ($c_{\text{Ref}} = 0.94$)

Correction via unfolding for local bkgd. fluct. and instrumental effects

Systematic uncertainties on Δ_{recoil}
- tracking efficiency: 4–10%
- other sources: < 4%
Ratios of event activity biased Δ_{recoil} distributions

ZNA

![Graph showing the ratio of event activity biased Δ_{recoil} distributions for ZNA. The graph indicates $R = 0.4$ for $p^\text{ch}_{T,jet}$ (GeV/c) ranging from 15 to 50.](ALICE-Preliminary)

V0A

![Graph showing the ratio of event activity biased Δ_{recoil} distributions for V0A. The graph indicates $R = 0.4$ for $p^\text{ch}_{T,jet}$ (GeV/c) ranging from 15 to 50.](ALICE-Preliminary)

| Ratio | $\Delta_{\text{recoil}}|0-20\%|$ | $\Delta_{\text{recoil}}|50-100\%|$ |
|-------|-----------------|-----------------|
| | compatible with unity |

Systematic uncertainties:
- Unfolding: 3–8%
- Other sources: < 4%
- Correlated systematics in numerator and denominator cancel
Out-of-cone energy transport

- Low IR cutoff ⇒ suppression results from spectrum shift due to out-of-cone energy transport
- Express suppression in terms of energy shift \bar{s}

Parameterize

$\Delta_{\text{recoil}}|_{50-100\%} = a \exp \left(-\frac{p_{T,\text{jet}}^{ch}}{b} \right)$

Assume parton energy loss causes average shift of Δ_{recoil} by \bar{s} independent of $p_{T,\text{jet}}^{ch}$

$\Delta_{\text{recoil}}|_{0-20\%} = a \exp \left(-\frac{p_{T,\text{jet}}^{ch} + \bar{s}}{b} \right)$

the same a and b as for $\Delta_{\text{recoil}}|_{50-100\%}$

$$\frac{\Delta_{\text{recoil}}|_{0-20\%}}{\Delta_{\text{recoil}}|_{50-100\%}} = \exp \left(-\frac{\bar{s}}{b} \right)$$
Limits on energy transport out of \(R = 0.4 \) cone in p–Pb

Shift for high EA (0–20 %) relative to low EA (50–100 %) p–Pb
\[
\bar{s} = (0.22 \pm 0.31_{\text{stat}} \pm 0.05_{\text{syst}}) \text{ GeV/c for V0A}
\]
\[
\bar{s} = (0.22 \pm 0.35_{\text{stat}} \pm 0.05_{\text{syst}}) \text{ GeV/c for ZNA}
\]
cf. \(\bar{s} = (8 \pm 2_{\text{stat}}) \text{ GeV/c in Pb–Pb} \)

Medium-induced charged energy transport out of \(R = 0.4 \) cone is less than 0.7 GeV/c (one sided 90% CL)
Summary

- New technique for measuring jet quenching in small systems
 - does not require the assumption that Event Activity is correlated with collision geometry
 - provides systematically well-controlled comparison of jet quenching as a function of Event Activity

- Technique applied to p–Pb data at $\sqrt{s_{NN}} = 5.02$ TeV with both ZNA and V0A event selection.

- No significant quenching effects are observed when comparing recoil jet yields for low and high Event Activity for both EA metrics.

- At 90% CL, medium-induced charged energy transport out of $R = 0.4$ cone is less than 0.7 GeV/c.
Backup slides
The Reference spectrum in Δ_{recoil} is scaled by the factor c_{Ref} to account for invariance of the jet density with TT-class, and the larger yield of Signal spectrum at high $p_{T,jet}^{\text{reco}}$. The value of c_{Ref} in this analysis is the ratio of the Signal and Reference spectra in the bin $0 < p_{T,jet}^{\text{reco}} < 1$ GeV/c, indicated by the vertical arrow.
Corrections of raw jet spectra

- **Background fluctuations:**
 - embedding MC tracks [1]
 \[\delta p_T = \sum_i p_{T,i} - A \cdot \rho - p_{T}^{\text{emb.trk.}} \]

- **Detector response:**
 - based on GEANT + PYTHIA

- **Response matrix:**
 - two effects are assumed to factorize
 \[R_{\text{full}} \left(p_{T,\text{jet}}^{\text{rec}}, p_{T,\text{jet}}^{\text{part}} \right) = \delta p_t \left(p_{T,\text{jet}}^{\text{rec}}, p_{T,\text{jet}}^{\text{det}} \right) \otimes R_{\text{instr}} \left(p_{T,\text{jet}}^{\text{det}}, p_{T,\text{jet}}^{\text{part}} \right) \]

- \(R_{\text{full}}^{-1} \) obtained with Bayesian [2] and SVD [3] unfolding with RooUnfold [4]

Δ_{recoil} spectra in pp at √s = 7 TeV

- pp analysis similar to Pb–Pb
- Gray boxes - syst. uncert. resulting from detector effects and unfolding
- PYTHIA comparison
 - Perugia 10 and 11 are compatible with the data
 - Supports the use Perugia 10 calculation as a reference for Pb–Pb at √s_{NN} = 2.76 TeV
- Bottom panel shows variation w.r.t. the smooth fit of ALICE data