Jet Quenching in a semi-Quark-Gluon Monopole Plasma: Light & Heavy Flavors Raa & V2 at RHIC & LHC

Jinfeng Liao
Indiana University, Physics Dept. & CEEM

Research Supported by NSF & DOE
The Making of CUJET3
Shuzhe Shi, Jiechen Xu, Jinfeng Liao, Miklos Gyulassy

CUJET3: a simulation framework based on a microscopic picture of Semi-quark-gluon monopole plasma
The Making of CUJET3

Heavy Flavor Puzzle (CUJET1)

CUJET1: Buzzatti & Gyulassy 1106.3061
Including E & M screening; elastic+inelastic; ...

...
The Making of CUJET3

Surprising transparency: Horowitz-Gyulassy; Betz-Gyulassy; Zhang-Liao; ...

CUJET2: Xu, Buzzatti, Gyulassy, 1402.2956
Including strong running coupling from RHIC to LHC; realistic bulk viscous hydro; ...
High Pt V2 was a long standing challenge for nearly all models (including CUJET1 and CUJET2)
Till ~ 2008, there was clear discrepancy between accurate data and model predictions.
Where Are Jets Quenched (More Strongly)?

- Taken for granted in all previous models: “waterfall” scenario.
- We realized the puzzle may concern more radical questions:
 - Where are jets quenched (more strongly)?

Geometry is a sensitive feature:
- “Egg yolk” has one geometry, “Egg white” has another.
Near-Tc Enhancement of Jet-Medium Coupling

Three major findings:

(1) With fixed Raa, the jet v2 is VERY sensitive to the T-dependence of jet-medium coupling;
(2) Energy loss around Tc region enhances the jet v2;
(3) RHIC data suggests a very strong enhancement near Tc.

In the paper PRL(2009) we concluded:

“In relativistic heavy ion collisions the jets are quenched about 2--5 times stronger in the near-Tc region than the higher-T QGP phase.”

— Confirmed by many studies later!
Looking Under the Hood of sQGP

Some of us started a while ago to ask: What makes the sQGP nearly prefect liquid? In particular, what are the relevant degrees of freedom?
sQGP: A Plasma of Chromo E & M Charges

Liberation of Thermal DoF

Degree of color liberation

Shuryak, Liao, ...: this is a chromo-magnetic monopole plasma!

Pisarski, Hidaka, ...: this is a semi-QGP!

The two pictures are in complement, from Electric or Magnetic language respectively, and reconciled into one coherent picture.
The sQGP is a new emergent phase of QCD matter, with suppressed quarks/gluons and a significant monopole component: It naturally bridges the confined phase and wQGP!
The Making of CUJET3

CUJET3: a simulation framework based on a microscopic picture of Semi-quark-gluon monopole plasma
CUJET3: Semi-Quark-Gluon Monopole Plasma

Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas

Jiechen Xu, Jinfeng Liao, and Miklos Gyulassy

1Department of Physics, Columbia University, New York 10027, USA
2Physics Department and RIKEN BNL Research Center, Brookhaven National Laboratory, New York 11973, USA
3RIKEN BNL Research Center, Brookhaven National Laboratory, New York 11973, USA

(Received 31 July 2015)

We utilize a new framework, CUJET3.0, to deduce the energy and temperature dependence of the jet transport parameter, $\hat{q}(E > 10\text{ GeV}, T)$, from a combined analysis of available data on nuclear modification factor and azimuthal asymmetries from high energy nuclear collisions at RHIC/BNL and LHC/CERN. Extending a previous perturbative-QCD based jet energy loss model (known as CUJET2.0) with (2+1)D viscous hydrodynamic bulk evolution, this new framework includes three novel features of non-perturbative physics origin: (i) the Polyakov loop suppression of color-electric scattering (aka 'semi-QGP' of Pisarski et al.), (ii) the enhancement of jet quenching due to emergent magnetic monopoles near T_c (aka 'magnetic scenario' of Liao and Shuryak), and (iii) thermodynamic properties constrained by lattice QCD data. CUJET3.0 reduces to $\hat{q}=2.0$ at high temperatures $T > 400\text{ MeV}$, while greatly enhances \hat{q} near the QCD deconfinement transition temperature range. This enhancement accounts well for the observed elliptic harmonics of jets with $p_T > 10\text{ GeV}$. Extrapolating our data-constrained \hat{q} down to thermal energy scales, $E=2\text{ GeV}$, we find for the first time a remarkable consistency between high energy jet quenching and bulk perfect fluidity with $\eta/s=\frac{1}{2} q=0.1$ near T_c.

PACS: 25.75.-q, 12.38.Mh, 24.85.+p, 13.87.-a

DOI: 10.1088/0264-9381/32/9/092501

Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0

Jiechen Xu, Jinfeng Liao, and Miklos Gyulassy

aDepartment of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, U.S.A.
bPhysics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 North Milo B. Sampson Lane, Bloomington, IN 47408, U.S.A.
cRIKEN BNL Research Center, Brookhaven National Laboratory, Building 510A, Upton, NY 11973, U.S.A.

E-mail: xjc@phys.columbia.edu, liaojr@indiana.edu, gyulassy@phys.columbia.edu
A Sophisticated Simulation Framework

DGLV-CUJET framework for describing multi-parton scattering:

\[
\frac{dN_{qg}^{n=1}}{dx_E} = \frac{18C_R}{\pi^2} \frac{4 + N_f}{16 + 9N_f} \int d\tau \, n(z) \Gamma(z) \int d^2k \\
\times \alpha_s \left(\frac{k^2}{x_+(1-x_+)} \right) \int d^2q \frac{\alpha_s^2(q^2)}{\mu^2(z)} \frac{f_E^2 \mu^2(z)}{q^2(q^2 + f_E^2 \mu^2(z))} \\
\times \frac{-2(k-q)}{(k-q)^2 + \chi^2(z)} \left[\frac{k}{k^2 + \chi^2(z)} - \frac{(k-q)}{(k-q)^2 + \chi^2(z)} \right] \\
\times \left[1 - \cos \left(\frac{(k-q)^2 + \chi^2(z)}{2x+E} \right) \right] \left(\frac{x_E}{x_+} \right) \left| \frac{dx_+}{dx_E} \right| .
\]

Original DGLV formalism has only quark/gluon scattering centers

We now include both color-electric and color-magnetic scattering centers.

\[
x \frac{dN}{dx} \propto \ldots \int q^2 \left[\frac{n \alpha_s^2(q^2) f_E^2}{q^2(q^2 + f_E^2 \mu^2)} \right] \ldots \\
\left[\frac{n_e (\alpha_s(q^2) \alpha_s(q^2)) f_E^2}{q^2(q^2 + f_E^2 \mu^2)} + \frac{n_m (\alpha^e(q^2) \alpha^m(q^2)) f_M^2}{q^2(q^2 + f_M^2 \mu^2)} \right]
\]

Our goal is to implement the nonperturbative NEAR-Tc Physics

\[\longrightarrow \text{CUJET3.0}\]

Xu, JL, Gyulassy, arXiv:1411.3673
The Making of sQGP in CUJET3.0

The model implementations of electric and magnetic components are carefully **constrained by available lattice data.**

* Electric density: L-loop suppression

\[\chi_T = c_q L + c_g L^2 \]

* Magnetic density: constrained by total pressure

\[(1 - \chi_T) \]

* Running coupling:

\[\alpha_s(Q^2) = \alpha_c \left[1 + \frac{9\alpha_c}{4\pi} \log \left(\frac{Q^2}{T_c^2} \right) \right] \]

* Screening:

\[f_E(T) = \sqrt{\chi_T}, \quad f_M(T) = c_m g \]

[Xu, JL, Gyulassy, arXiv:1411.3673(CPL); 1508.00552(JHEP)]
Systematic Calibration of CUJET3

Using light hadron Raa and v2 at RHIC200GeV, LHC2.76TeV, LHC5.02TeV with central and semi-central collisions.

We constrain the two key parameters of sQGMP by a chi-square analysis.

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Chi-square map on the parameter plane

Different set of data show different sensitivity in constraining parameters.

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Chi-square map on the parameter plane

Different set of data show different sensitivity in constraining parameters.

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Chi-square map on the parameter plane

Optimized choice of parameters:

\[\alpha_c = 0.9 \quad c_m = 0.26 \]

Model uncertainty band

\[\alpha_c = 0.75 \quad c_m = 0.22 \]
\[\alpha_c = 1.05 \quad c_m = 0.30 \]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Optimized parameters: Comparison with RHIC200GeV [PHENIX data]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Optimized parameters: Comparison with RHIC200GeV [PHENIX data]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Optimized parameters: Comparison with LHC2.76TeV
[ALICE Raa; ATLAS V2]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Optimized parameters: Comparison with LHC2.76TeV
[ALICE Raa; ATLAS V2]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Optimized parameters: Comparison with LHC5.02TeV
[CMS data]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Systematic Calibration of CUJET3

Optimized parameters: Comparison with LHC5.02TeV [CMS data]

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Independent Test with Heavy Flavor

The HF serves as an independent test: These data are NOT part of model parameter calibration.

D0 Raa and v2 compared with CMS at LHC5.02TeV

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Independent Test with Heavy Flavor

The HF serves as an independent test:
These data are NOT part of model parameter calibration.

D0 Raa and v2 compared with ALICE at LHC2.76TeV

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
Independent Test with Heavy Flavor

The HF serves as an independent test:
These data are NOT part of model parameter calibration.

D0 Raa and v2 compared with STAR at RHIC200GeV

[S. Shi, J. Xu, J. Liao, M. Gyulassy, in preparation]
The Challenge to Every Model

CUJET3 has passed this challenge. Look forward to every model taking up this challenge.
Event-by-Event Jet Quenching

Harmonic Jet Tomography

Event-by-event azimuthal anisotropy of jet quenching in relativistic heavy ion collisions

Xilin Zhang¹,³* and Jinfeng Liao¹,²†

\[R_{AA}(\phi) = R_{AA} \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \psi_n^J)] \right) \]

[X. Zhang, J. Liao, 1202.1047; 1208.6361; 1210.1245; 1311.5463]
Event-By-Event Jet Quenching

A first try of e-by-e CUJET3 exercise (for 10 events — computationally expensive!)

[Hydro background from Jaki Noronha-Holster]
Event-By-Event Jet Quenching

Correlated soft & hard responses to initial geometry
Event-By-Event Jet Quenching

Correlated soft & hard responses to initial geometry
Event-By-Event Jet Quenching

High-Pt V2 gets enhanced in e-by-e simulations.

A wealth of physics to be explored in e-by-e CUJET3!
Summary

CUJET3: a simulation framework based on a microscopic picture of Semi-quark-gluon monopole plasma

* The **CUJET3** successfully describes an large set of available single-hadron data: R_{aa} & $v2$ @ varied centrality & beam energies for light & heavy flavors.

* Preliminary event-by-event jet quenching in **CUJET3** suggests enhanced $v2$.

Discussions

Connecting the soft and hard physics in sQGMP