Extracting \hat{q} in event-by-event hydrodynamics and the centrality/energy puzzle

Carlota Andrés

Universidade de Santiago de Compostela

Quark Matter 2017, Chicago

N. Armesto, Harri Niemi, Risto Paatelainen, Carlos A. Salgado and Pia Zurita
1. Introduction

2. Energy loss implementation

3. Hydrodynamic modelling of the medium

4. Results

5. Limitations and conclusions
Study of suppression of high-p_T particles in PbPb collisions at the LHC and AuAu collisions at RHIC.

Analysis based on the quenching weights (QW) for medium-induced gluon radiation.

QW computed in multiple soft scattering approximation.

Embedded in EKRT event-by-event description of the medium.

Study done for different centrality classes.
The single inclusive cross section is described by

\[
\frac{d\sigma_{AA\rightarrow h+X}}{dp_T\,dy} = \int \frac{dx_2}{x_2} \frac{dz}{z} \sum_{i,j} x_1 f_i/A(x_1, Q^2) x_2 f_j/A(x_2, Q^2) \times \frac{d\hat{\sigma}_{ij\rightarrow k}}{d\hat{t}} D_{k\rightarrow h}(z, \mu_F^2)
\]

Factorization scale \(Q^2 = (p_T/z)^2\). Fragmentation scale as \(\mu_F = p_T\).

- CTEQ6M + EPS09 (NLO).
- We absorb energy loss in a redefinition of the fragmentation functions:

\[
D_{k\rightarrow h}^{(med)}(z, \mu_F^2) = \int_0^1 d\epsilon P_E(\epsilon) \frac{1}{1 - \epsilon} D_{k\rightarrow h}^{(vac)} \left(\frac{z}{1 - \epsilon}, \mu_F^2 \right)
\]

- \(P_E(\epsilon)\) is the Quenching Weight and \(D_{k\rightarrow h}^{(vac)}(z, \mu_F^2)\), DSS fragmentation functions.
The **ASW Quenching Weights** are given by

\[
P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dl^{(med)}(\omega_i)}{d\omega} \right] \times \delta \left(\Delta E - \sum_{i=1}^{n} \omega_i \right) \exp \left[- \int_{0}^{\infty} d\omega \frac{dl^{(med)}}{d\omega} \right]
\]

- **Independent** gluon emission assumed.
- QW are Poisson distributions.
- Support in recent works of **coherence** and **resummation** by J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk...
Coherence

- Totally coherent case:
 - Vacuum-like fragmentations.
 - Jets loosing energy as a single parton.
- This picture is in agreement with LHC data.

Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk, PLB 725 (2013) 357.
Independent gluon emission

- **Interference** effects may break independent gluon emission.

- They are **absent** for $\tau_{form} = \sqrt{\omega/\hat{q}} << L$.

- Independent gluon emission is a **good approximation** for soft radiation.

- For soft radiation and no finite energy effects **QW and rate equations** are **equivalent**.

In \(\frac{dI^{(med)}}{d\omega} \) the medium properties appear in: \(\sigma(r)n(\xi) \).

In the multiple soft scattering approximation we use

\[
\sigma(r)n(\xi) \approx \frac{1}{2} \hat{q}(\xi) r^2
\]

Perturbative tails neglected.

We specify the relation between \(\hat{q}(\xi) \) and the medium properties given by our hydrodynamic model as

\[
\hat{q}(\xi) = K \hat{q}_{QGP}(\xi) \approx K \cdot 2\epsilon^{3/4}(\xi)
\]

\(K \) is our fitting parameter.

Energy density obtained by solving the relativistic hydrodynamic equations.
Hydrodynamic medium modelling

Before...
- We used several ’event-averaged’ hydro simulations:
 - “Hirano”: no viscous, optical Glauber model, $\tau_0 = 0.6$ fm.
 - “Glauber”: viscous $\eta/s = 0.08$, energy density proportional to ρ_{bin} as initial condition, $\tau_0 = 1$ fm.
 - “fKLN”: viscous $\eta/s = 0.16$, factorised Kharzeev-Levin-Nardi model, $\tau_0 = 1$ fm.

Now...
- We use **EKRT event-by-event** hydro: arXiv:1505.02677 [hep-ph].
 - Initial conditions given: minijet + saturation model.
 - $\tau_0 = 0.197$ fm.
 - $\eta/s = 0.2$.

- Ambiguity before thermalization:
 - $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$.
Nuclear modification factor

- We use R_{AA} experimental data:

$$R_{AA} = \frac{dN_{AA}/d^2p_Tdy}{\langle N_{coll}\rangle dN_{pp}/dp_T^2dy}$$

- From Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and Au-Au at $\sqrt{s_{NN}} = 200$ GeV.

- ALICE data on R_{AA} for charged particles with $p_T > 5$ GeV in different centrality classes and for $|\eta| < 0.8$, arXiv:1208.2711 [hep-ex].

- PHENIX data on π_0 R_{AA} $p_T > 5$ GeV, arXiv:0801.4020 [nucl-ex].
R_{AA} at $\sqrt{s_{NN}} = 200$ GeV for different centralities

![Graphs showing R_{AA} for different centralities and Au-Au collisions at 200 GeV](image)
R_{AA} at $\sqrt{s_{NN}} = 2.76$ TeV for different centralities

χ^2 to the best value of K. $\Delta \chi^2 = 1$.
K-factor vs. impact parameter

$K = \hat{q}/2\hat{e}^{3/4}$

$\hat{q}(\tau) = \hat{q}(\tau_0), \tau < \tau_0$

K depends mainly on the energy and it is almost independent of the centrality of the collision!!
K-factor vs. $\epsilon \tau_0$

\begin{align*}
\hat{q}(\tau) &= \hat{q}(\tau_0), \quad \tau < \tau_0 \\
K &= \frac{\hat{q}}{2\epsilon^{3/4}} \\
\hat{q} &= \hat{q}_0
\end{align*}

Difficult to reconcile the energy and centrality dependence!! A new puzzle??

Possible explanations already being studied: Amir Kumar Session 5.4 We 8:50.
Limitations

- The definition of \hat{q} neglects the **perturbative tails** of the distributions.

- The QW find support in the **coherence** analysis of the medium: if coherence is broken they could fail.

- Finite energy corrections.

- \hat{q} energy or length independent.

- *Collisional energy loss* is neglected.
Conclusions

- We fit the single-inclusive experimental data at RHIC and LHC for different centralities.
- The fitted value at RHIC confirms large corrections to the ideal case.
- For the case of the LHC, the extracted value of K is close to unity.
- K-factor is $\sim 2 - 3$ times larger for RHIC than at the LHC.
- Centrality dependences at RHIC and the LHC are rather flat.
- The change in the value of K does not look to be simply due to the different local medium parameters.
- Unexpected result!!
The inclusive energy distribution of gluon radiation off an in-medium produced parton is given by

$$\omega \frac{dI^{(med)}}{d\omega} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2 \text{Re} \int_{\xi_0}^{\infty} dy_l \int_{y_l}^{\infty} d\bar{y}_l \int_0^\infty du \int d\mathbf{k}_\perp$$

$$\times e^{-i\mathbf{k}_\perp \cdot \mathbf{u}} e^{-\frac{1}{2} \int_0^{\infty} d\xi n(\xi) \sigma(\mathbf{u})} \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{u}} \int_{y=0}^{\mathbf{u}=\mathbf{r}(\bar{y}_l)} D\mathbf{r}$$

$$\times \exp \left[i \int_{y_l}^{\bar{y}_l} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^2 - \frac{n(\xi) \sigma(\mathbf{r})}{i\omega} \right) \right]$$

- $n(\xi)$, density of scattering centers.
- $\sigma(\mathbf{r})$, strength of a single elastic scattering.
The production weight is given by

$$\omega(x_0, y_0) = T_{Pb}(x_0, y_0) T_{Pb}(\vec{b} - (x_0, y_0))$$

The average values of an observable and in particular of our fragmentations functions is computed as

$$\langle O \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0) O(x_0, y_0, \phi)$$

$$\langle D^{(med)}_{k \to h}(z, \mu^2_F) \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0)$$

$$\times \int d\zeta P(x_0, y_0, \phi, \zeta) \frac{1}{1 - \zeta} D^{(vac)}_{k \to h} \left(\frac{z}{1 - \zeta}, \mu^2_F \right)$$

where $N = 2\pi \int dx_0 dy_0 \omega(x_0, y_0)$.
R_{AA} at $\sqrt{s_{NN}} = 200$ GeV for different centralities
R_{AA} at $\sqrt{s_{NN}} = 2.76$ TeV for different centralities

χ^2 to the best value of K. $\Delta \chi^2 = 1.$
K-factor vs. impact parameter

Energy density constant before thermalization.

Free-streaming case.

\[\hat{q}(\xi) = 0 \text{ before thermalization.} \]

\[K \text{ depends mainly on the energy and it is almost independent of the centrality of the collision!!} \]
K-factor vs. $\epsilon\tau_0$ for \hat{q} constant before thermalization

Difficult to reconcile the energy and centrality dependence!! A new puzzle??

R_{AA} predictions for $\sqrt{s_{NN}} = 5.02$ TeV

Using $K_{5.02} = K_{2.76}$

If $R_{AA}^{2.76} = R_{AA}^{5.02} \Rightarrow K_{5.02} \sim 0.85K_{2.76}$

Glauber, $K=1.133 \pm 0.028$

fKLN, $K=1.088 \pm 0.028$

Same K values as $\sqrt{s_{NN}} = 2.76$ TeV
Nuclear modification factors R_{AA} for single-inclusive and I_{AA} for hadron-triggered fragmentation functions for different values of $2K = K'/0.73$, with $K' = 0.5, 1, 2, 3, \ldots, 20$. The green line in the curve corresponding to the minimum of the common fit to R_{AA} and I_{AA} is $K = 4.1$.6
Left: χ^2-values for different values of K for light hadrons and for the three different extrapolations for $\xi < \tau_0$. Red lines correspond to single-inclusive π_0 data from PHENIX (R_{AA}) and black ones to the double-inclusive measurements by STAR (I_{AA}).

Right: the corresponding central values (minima of the χ^2) and the uncertainties computed by considering $\Delta \chi^2 = 1$.

Case i): $\hat{q}(\tau) = 0$ for $\tau < \tau_0$

Case ii): $\hat{q}(\tau) = \hat{q}(\tau_0)$ for $\tau < \tau_0$

Case iii): $\hat{q}(\tau) = \frac{\hat{q}(\tau_0)}{\tau^{3/4}}$ for $\tau < \tau_0$
Hydrodynamic medium modelling

- We use several hydrodynamic simulations:
 - “Hirano”: no viscous, optical Glauber model, $\tau_0 = 0.6$ fm.
 - “Glauber”: viscous $\eta/s=0.08$, energy density proportional to ρ_{bin} as initial condition, $\tau_0 = 1$ fm.
 - “fKLN”: viscous $\eta/s=0.16$, factorised Kharzeev-Levin-Nardi model, $\tau_0 = 1$ fm.

- Uncertainty coming from the hydrodynamic background is negligible with respect to our conclusions.

- Ambiguity before thermalization. 3 extrapolations:
 - Case i): $\hat{q}(\xi) = 0$ for $\xi < \tau_0$.
 - Case ii): $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$.
 - Case iii): $\hat{q}(\xi) = \hat{q}(\tau_0)/\xi^{3/4}$ for $\xi < \tau_0$.
Scaled transverse momentum distributions

Tetsufumi Hirano, arXiv: nucl-th/0108004

FIG. 3. Scaled transverse momentum distribution of negative pions and anti-protons in Au+Au 130 A GeV central and semi-central collisions. Solid lines and dashed lines correspond to initial conditions A and B, respectively. Experimental data are observed by the PHENIX Collaboration.
v_2 for charged pions

Tetsufumi Hirano and Keiichi Tsuda, arXiv:nucl-th/0205043

FIG. 12: $v_2(p_t)$ for charged pions. The solid, dotted, and dashed lines correspond to total pions, pions directly emitted from freeze-out hypersurface, and pions from resonance decays. Data from Ref. [56].
Multiplicty at RHIC

FIG. 7: (Color online) Centrality dependence of total multiplicity dN/dY and $<p_T>$ for $\pi^+, \pi^-, K^+, K^-, p$ and \bar{p} from PHENIX [84] for Au+Au collisions at $\sqrt{s} = 200$ GeV, compared to the viscous hydrodynamic model and various η/s, for Glauber initial conditions and CGC initial conditions. The model parameters used here are $\tau_0 = 1$ fm/c, $\tau_H = 6\eta/s$, $\lambda_1 = 0$, $T_f = 140$ MeV and adjusted T_i (see Table I).
ν_2 at RHIC

\(v_2 \) at LHC

FIG. 2: (Color online) Anisotropy (3) prediction for \(\sqrt{s} = 5.5 \) TeV Pb+Pb collisions (LHC), as a function of centrality. Prediction is based on values of \(\eta/s \) for the Glauber/CGC model that matched \(\sqrt{s} = 200 \) GeV Au+Au collision data from PHOBOS at RHIC ([31], shown for comparison). The shaded band corresponds to the estimated uncertainty in our prediction from additional systematic effects: using \(e_p/2 \) rather than \(v_2 \) (5%) [1]; using a lattice EoS from [29] rather than [27] (5%); not including hadronic cascade afterburner (5%) [38].
In the case of 'Hirano’s ideal hydro', the values of the temperature at \(\tau=0.6 \) fm and \(x=y=\eta=0 \) for RHIC and LHC are:

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>RHIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-05%</td>
<td>484.3 MeV</td>
<td>373.2 MeV</td>
</tr>
<tr>
<td>05-10%</td>
<td>476.6 MeV</td>
<td>369.6 MeV</td>
</tr>
<tr>
<td>10-20%</td>
<td>463.6 MeV</td>
<td>356.8 MeV</td>
</tr>
<tr>
<td>20-30%</td>
<td>444.6 MeV</td>
<td>341.1 MeV</td>
</tr>
<tr>
<td>30-40%</td>
<td>421.5 MeV</td>
<td>323.7 MeV</td>
</tr>
<tr>
<td>40-50%</td>
<td>393.6 MeV</td>
<td></td>
</tr>
<tr>
<td>50-60%</td>
<td>359.6 MeV</td>
<td></td>
</tr>
</tbody>
</table>
'Matt’s viscous hydro for two different initial conditions and \(\eta/s \). Initial temperatures at \(x=y=0, \tau=1 \) fm:

Glauber:
- \(b=2 \) fm LHC: 418 MeV
- \(b=12 \) fm LHC: 272 MeV
- \(b=2 \) fm RHIC: 331 MeV

fKLN:
- \(b=2 \) fm LHC: 389 MeV
- \(b=12 \) fm LHC: 296 MeV
- \(b=2 \) fm RHIC: 299 MeV
\(\hat{q} \sim T^3 \sim \epsilon^{3/4} \) both for hadronic and partonic phase

Figure 3. Transport coefficient as a function of energy density for different media: cold, massless hot pion gas (dotted) and (ideal) QGP (solid curve)
K versus initial temperature

\[K = \frac{\hat{q}}{2\epsilon^{3/4}} \]

\[\hat{q}(\tau) = \hat{q}(\tau_0), \; \tau < \tau_0 \]

- Hirano RHIC
- fKLN RHIC
- Glauber RHIC
- Hirano LHC
- fKLN LHC
- Glauber LHC
K versus initial energy

\[K = \frac{\hat{q}}{2\epsilon^{3/4}} \]

\[\hat{q}(\tau) = \hat{q}(\tau_0), \quad \tau < \tau_0 \]

Hirano RHIC
fKLN RHIC
Glauber RHIC
Hirano LHC
fKLN LHC
Glauber LHC