The x and scale dependence of the transport coefficient \hat{q}

Wednesday 8 February 2017 08:50 (20 minutes)

We take a closer look at the single particle nuclear modification factor (R_{AA}) and azimuthal anisotropy (v_2) of

leading hadrons at high transverse momentum (p_{T}) at both RHIC and LHC collision energies. We focus on the

established reduction in the interaction measure \hat{q}/T^3 between RHIC and LHC, as discovered by the JET collaboration. The centrality dependence of the R_{AA} and v_2 at both these collision energies strongly suggests that the reduction is not caused by a temperature dependence in the ratio of \hat{q}/T^3 but rather by an energy dependence of \hat{q} .

We study this dependence by introducing an x dependence in the distribution function that is integrated to obtain

 \hat{q} . We conjecture on possible forms of a scale dependence by relating \hat{q} to an object similar to a transverse momentum dependent parton distribution function (TMDPDF). The ensuing operator product is then related to quantities

that may be estimated in lattice QCD.

Preferred Track

Jets and High pT Hadrons

Collaboration

Not applicable

Primary author: KUMAR, Amit (Wayne State University)

Presenter: KUMAR, Amit (Wayne State University)

Session Classification: Parallel Session 5.4: Jets and High pT Hadrons (IV)

Track Classification: Jets and High pT Hadrons