Chiral magnetic effect and anomalous transport from real-time lattice simulations

Niklas Mueller
Heidelberg University

based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji

Quark Matter 2017 - Hyatt Regency Chicago

Chicago - 2017 / 02 / 07
Outline

1. Anomalous phenomena in heavy ion collisions
2. Classical-statistical simulations
3. Conclusions
1. Anomalous Phenomena in Heavy Ion Collisions

CGC colliding nuclei

flux tubes

over-occupied plasma

kinetic regime

hydrodynamic regime

S. Schlichting 2016
1. Anomalous Phenomena in Heavy Ion Collisions

- CGC: colliding nuclei
- Flux tubes
- Over-occupied plasma
- Kinetic regime
- Hydrodynamic regime

Non-equilibrium anomalous fermion production from coherent fields (Tanji et al. 2016) and sphaleron transitions (Mace et al. 2016)
1. Anomalous Phenomena in Heavy Ion Collisions

CGC colliding nuclei

flux tubes

over-occupied plasma

kinetic regime

hydrodynamic regime

non-equilibrium anomalous fermion production from coherent fields (Tanji et al. 2016) and sphaleron transitions (Mace et al. 2016)

large magnetic fields present

Anomalous Transport (CME, CSE and CMW)

?
1. Anomalous Phenomena in Heavy Ion Collisions

- CGC colliding nuclei
- Flux tubes
- Over-occupied plasma
- Kinetic regime
- Hydrodynamic regime

Non-equilibrium **anomalous fermion production** from coherent fields (Tanji et al. 2016) and sphaleron transitions (Mace et al. 2016)

Large **magnetic fields** present

Anomalous Transport (CME, CSE and CMW)

Subsequent interactions in the fire ball, axial transport and relaxation

weak to strong coupling
1. Anomalous Phenomena in Heavy Ion Collisions

CGC colliding nuclei

flux tubes

over-occupied plasma

kinetic regime

hydrodynamic regime

non-equilibrium anomalous fermion production from coherent fields (TANJI et al. 2016) and sphaleron transitions (MACE et al. 2016)

large magnetic fields present Anomalous Transport (CME, CSE and CMW)

Subsequent interactions in the fire ball, axial transport and relaxation weak to strong coupling

Theory:

classical statistical simulations + fermions

chiral kinetic theory

anomalous hydrodynamics

Thermalization / Freezout
1. Anomalous Phenomena in Heavy Ion Collisions

CGC colliding nuclei

flux tubes

over-occupied plasma

kinetic regime

hydrodynamic regime

non-equilibrium **anomalous fermion production** from coherent fields (Tanji et al. 2016) and sphaleron transitions (Mace et al. 2016)

large **magnetic fields** present
Anomalous Transport (CME, CSE and CMW)

Subsequent interactions in the fire ball, axial transport and relaxation

weak to strong coupling

Theory:

classical statistical simulations + fermions

chiral kinetic theory

anomalous hydrodynamics
2. Real-time simulations

Anomalous fermion dynamics induced by a topological transition
→ Classical statistical simulations
2. Real-time simulations

Anomalous fermion dynamics induced by a topological transition

→ Classical statistical simulations

simplified situation: setting up an isolated sphaleron transition in background abelian magnetic fields

Mace et al 2016 (see poster)
2. Real-time simulations

Anomalous fermion dynamics induced by a topological transition → Classical statistical simulations

simplified situation: setting up an isolated sphaleron transition in background abelian magnetic fields

Mace et al 2016 (see poster)
2. Real-time simulations

Anomalous fermion dynamics induced by a topological transition
→ Classical statistical simulations

simplified situation: setting up an isolated sphaleron transition in background abelian magnetic fields

Mace et al 2016 (see poster)
2. Real-time simulations

Anomalous fermion dynamics induced by a topological transition → Classical statistical simulations

simplified situation: setting up an isolated sphaleron transition in background abelian magnetic fields

- consistent treatment of axial charge production, non-abelian gauge fields as dynamical degrees of freedom.

Fermions: Challenging!
Solving Dirac operator equation in mode-function expansion

\[
i\gamma^0 \partial_t \hat{\psi} = (-i \slashed{D} + m) \hat{\psi}
\]

\[
\hat{\psi}(t) = \frac{1}{\sqrt{V}} \sum_{\lambda} \left(\hat{b}_\lambda(0) \phi^u_\lambda(t, x) + \hat{d}^\dagger_\lambda(0) \phi^u_\lambda(t, x) \right)
\]
2. Real-time simulations

Anomalous fermion dynamics induced by a topological transition
→ Classical statistical simulations

simplified situation: setting up an isolated sphaleron transition in background abelian magnetic fields

- consistent treatment of axial charge production, non-abelian gauge fields as dynamical degrees of freedom.

Fermions: Challenging!
Solving Dirac operator equation in mode-function expansion

→ extremely costly (∼N^6)
→ big obstacle so far and many attempts at reducing price (e.g. 'low-cost' techniques, Borsányi and Hindmarsh 2009)
2. Real-time simulations

Technical breakthroughs – real time fermions
2. Real-time simulations

Technical breakthroughs – real time fermions

Evolution of the fermion operators **extremely costly due to mode-function expansion** (cost with lattice size: N^6 for fermions vs. N^3 for 'YM only')

\[
\hat{\psi}_x(t) = \frac{1}{\sqrt{V}} \sum_{\lambda} \left(\hat{b}_\lambda(0) \phi^{u}_\lambda(t, x) + \hat{d}^\dagger_\lambda(0) \phi^{u}_\lambda(t, x) \right)
\]
2. Real-time simulations

Technical breakthroughs – real time fermions

Evolution of the fermion operators extremely costly due to mode-function expansion
(cost with lattice size: \(N^6\) for fermions vs. \(N^3\) for 'YM only')

\[
\hat{\psi}_x(t) = \frac{1}{\sqrt{V}} \sum_\lambda \left(\hat{b}_\lambda(0) \phi^u_\lambda(t, x) + \hat{d}^\dagger_\lambda(0) \phi^d_\lambda(t, x) \right)
\]

→ stochastic descriptions have been put forward early on: 'low-cost fermions'

(Borsányi and Hindmarsh 2009, Berges, Gelfand)

→ converge in a limited number of cases, hopeless in many others,
 especially for anomalous dynamics!
2. Real-time simulations

Technical breakthroughs – real time fermions

Evolution of the fermion operators extremely costly due to mode-function expansion
(cost with lattice size: N^6 for fermions vs. N^3 for 'YM only')

\[
\hat{\psi}_\mathbf{x}(t) = \frac{1}{\sqrt{V}} \sum_\lambda \left(\hat{b}_\lambda(0) \phi^u_\lambda(t, \mathbf{x}) + \hat{d}^\dagger_\lambda(0) \phi^u_\lambda(t, \mathbf{x}) \right)
\]

→ stochastic descriptions have been put forward early on: 'low-cost fermions'
 (Borsányi and Hindmarsh 2009, Berges, Gelfand)

→ converge in a limited number of cases, hopeless in many others,
 especially for anomalous dynamics!

Our approach:
- tree-level operator improvements (Eguchi and N. Kawamoto 1984)
- Wilson-averaging

→ works extremely well, convergence already on small lattices 16x16x16 for smooth gauge fields
2. **Real-time simulations**

Technical breakthroughs – real time fermions

Evolution of the fermion operators extremely costly due to mode-function expansion (cost with lattice size: N^6 for fermions vs. N^3 for 'YM only')

\[
\hat{\psi}_x(t) = \frac{1}{\sqrt{V}} \sum_{\lambda} \left(\hat{b}_\lambda(0) \phi^u_\lambda(t, x) + \hat{d}^\dagger_\lambda(0) \phi^d_\lambda(t, x) \right)
\]

→ stochastic descriptions have been put forward early on: 'low-cost fermions'

(Borsányi and Hindmarsh 2009, Berges, Gelfand)

→ converge in a limited number of cases, hopeless in many others, especially for anomalous dynamics!

Our approach:
- tree-level operator improvements (Eguchi and N. Kawamoto 1984)
- Wilson-averaging

→ works extremely well, convergence already on small lattices 16x16x16 for smooth gauge fields

Computational Resources:

[NERSC] [SCC]
2. Real-time simulations

Technical breakthroughs – real time fermions

Evolution of the fermion operators extremely costly due to mode-function expansion (cost with lattice size: N^6 for fermions vs. N^3 for 'YM only')

\[\hat{\psi}_x(t) = \frac{1}{\sqrt{V}} \sum_{\lambda} \left(\hat{b}_\lambda(0) \phi^u_\lambda(t, x) + \hat{d}_\lambda^\dagger(0) \phi^\dagger_\lambda(t, x) \right) \]

→ stochastic descriptions have been put forward early on: 'low-cost fermions'

(Borsányi and Hindmarsh 2009, Berges, Gelfand)

→ converge in a limited number of cases, hopeless in many others, especially for anomalous dynamics!

Our approach:
- tree-level operator improvements (Eguchi and N. Kawamoto 1984)
- Wilson-averaging

→ works extremely well, convergence already on small lattices 16x16x16 for smooth gauge fields

Computational Resources:

Check arXiv:1612.02477 for the current state-of-art for real-time fermion simulations!
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. **Real-time simulations**

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. **Real-time simulations**

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)
2. Real-time simulations

Chiral Magnetic and Chiral Separation Effect
NM, Schlichting, Sharma, PRL 117 (2016) 142301; Mace, NM, Schlichting, Sharma, arXiv:1612.02477

Initially: Vacuum (no fermions, no axial charge)

Chiral Magnetic Effect: Electric current generated due to axial charge produced
Chiral Separation Effect: Axial current generated due to electric charge

→ Emergence of the Chiral Magnetic Wave
2. Real-time simulations

Magnetic Field Dependence
2. Real-time simulations

Magnetic Field Dependence

finite magnetic field:
→ important deviations from 'ideal' picture of CME
2. Real-time simulations

Magnetic Field Dependence

Finite magnetic field: important deviations from 'ideal' picture of CME

→ asymptotic limit, "simple" estimates work

max $t/t_{sph} = 1.5$

finite magnetic field: important deviations from 'ideal' picture of CME
2. Real-time simulations

Magnetic Field Dependence

finite magnetic field:
→ important deviations from 'ideal'
picture of CME
2. Real-time simulations

Finite quark mass
2. **Real-time simulations**

Finite quark mass

Finite quark mass effects → anomalous transport suppressed for heavy quarks
2. Real-time simulations

Finite quark mass

Finite quark mass effects → anomalous transport suppressed for heavy quarks
3. Real-time simulations

Simulating chiral fermions in real-time: Overlap fermions

3. Real-time simulations

Simulating chiral fermions in real-time: Overlap fermions

Benchmark:

Wilson-fermions vs. Overlap fermions
3. Real-time simulations

Simulating chiral fermions in real-time: *Overlap fermions*

Benchmark:

Wilson-fermions vs. Overlap fermions

- mass matters! chiral instabilities
- helicity transport: heavy ions and astrophysics!

(Yamamoto, Akamatsu, Kaplan, Reddy, Sen, Dvornikov...)

![Graphs showing vector and axial density plots](image)
3. Real-time simulations

Simulating chiral fermions in real-time: *Overlap fermions*

Benchmark:

Wilson-fermions vs. Overlap fermions

- mass matters! **chiral instabilities**
- helicity transport: heavy ions and astrophysics!
- (Yamamoto, Akamatsu, Kaplan, Reddy, Sen, Dvornikov...)

- real-time evolution beyond early time
3. Conclusions

- I have shown you real-time classical statistical simulations of fermion production during sphaleron transitions in background magnetic fields.

- Axial anomaly realized in lattice simulations using Wilson fermions.

- Chiral Magnetic and Chiral Separation Effect emerge dynamically.

- Observation of the Chiral Magnetic Wave.

- Have investigated finite mass and magnetic field dependence. Finite quark mass plays an important role: dissipation of anomalous currents.

- Simulated chiral lattice fermions in real-time – overlap fermions!

- relativistic chiral kinetic theory from world-lines (with R. Venugopalan)
A. Classical Statistical Simulations

(see for example Kasper et al. Phys.Rev. D90 (2014) 2, 025016)

typical situation: large coherent or highly occupied gauge fields → correspondence principle

- initial stages of a heavy ion collision: \(A \sim 1/g \)
- colliding laser beams → large and coherent fields

The classical-statistical approximation is a systematic expansion of the 'quantum' fields around the 'classical' fields

Fermions are never “classical”

\[
Z_c = \int [dA] \rho_G(A) \exp \left(\text{Tr} \log \Delta_c [A]^{-1} + iS_G \right)
\]

\[
i\gamma^0 \partial_t \hat{\psi} = (-iD^s_W + m)\hat{\psi}
\]

Exact description via \textbf{modefunctions} up to 24x24x64 lattices
B. Algorithmic Improvements

Fermions: Exact description via \textit{modefunctions} up to 24x24x64 lattices

We use a tree-level improved version of the lattice Hamiltonian, which takes the form

\[
H = \sum_x \psi_x^\dagger m^0 \gamma^0 \psi + \frac{1}{2} \sum_{n,x,i} C_n \psi_x^\dagger \gamma^0 \left[\left(-i \gamma^i - nr_w \right) U_{x,+ni} \psi_{x+ni} + 2nr_w \psi_x - \left(-i \gamma^i + nr_w \right) U_{x,-ni} \psi_{x-ni} \right]
\]

where \(r_w\) denotes the Wilson coefficient, the coefficients \(C_n\) are chosen to optimize the convergence, and we introduce the following short hand notation for the connecting gauge links

\[
U_{x,+ni} = \prod_{k=0}^{n-1} U_{x+ki,i}, \quad U_{x,-ni} = \prod_{k=1}^{n} U_{x-ki,i}^\dagger
\]

→ improvement of chiral properties
→ extremely important for larger fermion masses
→ average fermionic observables over Wilson parameters with opposite sign
→ leading order errors in the anomaly equation cancel
C. Magnetic Fields on the lattice

Magnetic fields break translation invariance → magnetic translation group

- Magnetic fields on a torus very non-trivial
 (see Al-Hashimi & Wiese “Accidental Symmetries”, also Bali et al.)

\[U_{y,n} = e^{ia^2qBn_x} ; \quad U_{x,N_x-1,n_y,n_z} = e^{-ia^2qBN_xn_y} \]
\[U_{x,n} = 1, \quad n_x \neq N_x - 1; \quad U_{z,n} = 1 \]

- Intriguing lattice artefacts!

→ spoil the low-cost method
 --- while there probably are field configurations where low-cost works,
 this is certainly not the case in magnetic fields
D. Anomaly Realization on the Lattice

Chiral Symmetry + Fermion doubling + Chiral Anomaly = “one of the prettiest connections I have ever seen”

- The axial anomaly and the fermion doubling problem are intimately related

- Lattice theory regularized on the basis of the action already

- Anomaly comes from the non-trivial continuum limit of any regulator you put in to remove doublers