Chiral vortical and magnetic effects in anomalous hydrodynamics

Xingyu Guo Dmitri E. Kharzeev Xuguang Huang Weitian Deng Pengfei Zhuang Yuji Hirono

Quark Matter 2017
Outline

• Motivation

• Hydro Set and Initial Conditions

• Numerical Results

• Conclusion
Motivation

• Chiral effects in HIC: still in focus and debate

• γ correlation of identified particles?

• In low energy and peripheral collisions, CVE is stronger than CME

• Hydrodynamics simulation of CVE is necessary
3+1D Anomalous Ideal Hydrodynamics

with chiral magnetic effect

\[\partial_\mu T^{\mu\nu} = e F^{\nu\lambda} j_\lambda \]
\[\partial_\mu j^\mu = 0 \quad j^\mu = n u^\mu + \kappa_B B^\mu \]
\[\partial_\mu j_5^\mu = -C E_\mu B^\mu \quad j_5^\mu = n u_5^\mu + \xi_B B^\mu \]

EOS: ideal massless quark-gluon gas

\[\epsilon = 3p = \frac{19\pi^2}{12} T^4 + \frac{9}{2} (\mu^2 + \mu_5^2) T^2 + \frac{9}{4\pi^2} (\mu^4 + 6\mu^2 \mu_5^2 + \mu_5^4) \]

Transport Coefficients

\[e\kappa_B = C\mu_5 (1 - \frac{\mu_5 n_5}{\epsilon + p}) \quad e\xi_B = C\mu (1 - \frac{\mu n}{\epsilon + p}) \]

Determined by requiring entropy does not decrease [1,2].

Two more coefficients if including CVE:

\[e^2 \kappa_\omega = 2C\mu\mu_5 (1 - \frac{\mu n}{\epsilon + p}) \quad e^2 \xi_\omega = C\mu^2 (1 - \frac{2\mu_5 n_5}{\epsilon + p}) \]

Magnetic Field

Exponentially decaying Gaussian distribution:

\[eB_y(\tau, \eta, x, y) = eB_0 \frac{b}{2R} \exp \left(- \frac{x^2}{\sigma_x^2} - \frac{y^2}{\sigma_y^2} - \frac{\eta^2}{\sigma_\eta^2} - \frac{\tau}{\tau_B} \right) \]

\[eB_0 = 0.5 GeV^2 \quad \sigma_x = 0.8(R - \frac{b}{2}) \]

\[\sigma_y = 0.8 \sqrt{R^2 - (b/2)^2} \quad \sigma_\eta = \sqrt{2} \]

Recent magneto-hydrodynamics simulation[1] gave time evolution very similar to exponential decay

Initial Conditions

• MC-Glauber model is sufficient for CME simulation but gives zero initial vorticity

• HIJING model has been used to describe vorticity of initial system[1] but has no chiral charge distribution

γ Correlation of Identified Particles with CME for RHIC 200GeV Au-Au Collisions

p-π opposite-sign (red line) and same-sign (blue line) correlation in comparison with experimental data (dots)

A lot of other contributions are cancelled out in OS-SS correlation
γ Correlation of Identified Particles with CME for RHIC 200GeV Au-Au Collisions

$\pi-\pi$ OS-SS correlation (line) in comparison with experimental data (dots)

possible indication of strong CVE in more peripheral collisions
Comparison of CVE and CME Contributions

Simulation of pion and proton a_1 with different effects included, for RHIC 200Gev Au-Au 40~50% centrality collisions

<table>
<thead>
<tr>
<th></th>
<th>π</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>None(Glauber)</td>
<td>-0.0007 ± 0.0019</td>
<td>-0.0058 ± 0.0063</td>
</tr>
<tr>
<td>None</td>
<td>-0.0023 ± 0.0014</td>
<td>-0.0120 ± 0.0038</td>
</tr>
<tr>
<td>CME</td>
<td>0.0013 ± 0.0013</td>
<td>-0.0027 ± 0.0042</td>
</tr>
<tr>
<td>CVE + CME</td>
<td>0.0048 ± 0.0018</td>
<td>0.0109 ± 0.0044</td>
</tr>
</tbody>
</table>

- CVE calculated as perturbation
- Initial chiral charge taken as proportional to temperature
- None-zero background comes from fluctuation in HIJING events
Conclusion and Outlook

• We calculated γ correlation of protons and pions for RHIC 200Gev Au-Au Collisions.

• We also made a comparison of CVE and CME contribution in a given condition.

• Both show signs of strong CVE contribution

• More observables: electric quadrupole, Λ polarization, different collision energy…

• Improvements: resonance decay…

• CVE hydrodynamics: initial condition, stable evolution…
γ Correlation of Identical Particles with CME for RHIC 200GeV Au-Au Collisions

\[\gamma \text{ Correlation} \]

p-p correlation (line) in comparison with experimental data (dots)