Measurements of Λ_c^+ and D_s^+ production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV from STAR

Long Zhou (for the STAR Collaboration)

University of Science and Technology of China
Motivation: Λ_c^+

- Significant enhancement in baryon-to-meson ratio observed in central A+A collisions for light hadron and hadrons containing strange quarks
 - Coalescence mechanism well describes the observation
- Enhancement of Λ_c^+/D^0 ratio depends on the degree of charm quark thermalization and coalescence mechanism implementation

\[\frac{(p+p)}{(\pi^+ + \pi^-)} \]

\[\frac{(\Lambda + \bar{\Lambda})}{2K_S} \]

\[\Lambda_b \]

\[D^0 \]

\[\text{Ko: di-quark} \]

\[\text{Ko: three-quark} \]

\[\text{SHM} \]

\[\text{Greco} \]

\[\text{PYTHIA} \]

STAR arXiv:nucl-ex/0601042

Greco model : S.Ghosh, et. al. PRD 90,054018 (2014)
Motivation: D_s^+

- Study hadronization mechanism
 - Strangeness enhancement in A+A collisions
 - $R_{AA}(D_s^+)>R_{AA}(D)$, D_s^+/D^0 enhancement due to coalescence hadronization

- More sensitive to properties of Quark Gluon Plasma
 - $v_2(D_s^+)<v_2(D)$ due to earlier freeze-out of D_s^+

- Measurements of Λ_c^+ and D_s^+ can help constrain the total charm yield

H. Min et al. PRL 110,112301 (2013)
Heavy Flavor Tracker

- Excellent PID and tracking
- Full azimuthal coverage
- $|\eta|<1$
- HFT in 2014-2016
Λ_c^+ and D_s^+ reconstruction

- **Dataset**
 - Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV recorded in 2014
 - About 900M minimum bias events

- **Reconstruction efficiency**
 - Data-driven approach

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass (MeV/c^2)</th>
<th>CT</th>
<th>Decay Channel</th>
<th>B. R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s^+</td>
<td>1968</td>
<td>150 μm</td>
<td>$D_s^+ \rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$</td>
<td>2.32 %</td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>2286</td>
<td>60 μm</td>
<td>$\Lambda_c^+ \rightarrow \pi^+ p^+ K^-$</td>
<td>6.35%</td>
</tr>
</tbody>
</table>

Charge conjugates also measured
Signal optimization for Λ_c^+

- Topological cut optimized using TMVA package
- Background extracted from real data using wrong-sign method
- Signal simulated with data-driven fast simulation

![Graphs showing decay length, DCA between daughters, and cosine of pointing angle for kaon, pion, and proton DCA.](image-url)
The first Λ_c^+ signal observed in heavy-ion collisions!
• Observed an enhancement of Λ^+_c / D^0 ratio over PYTHIA; similar amplitude to light strange hadrons
 STAR: $1.3 \pm 0.3\text{(stat)} \pm 0.4\text{(sys)}$, PYTHIA: 0.1 - 0.15
• Ko model (0-5%) with coalescence and thermalized charm quarks is consistent with data
D_s^+ and D^+ reconstruction

- About a factor 4 improvement in D_s^+ signal significance compared with the results shown at the QM2015
D^+ and D_s^+ p_T spectra

- The D^+ p_T spectra from two decay channels are consistent
 - $D^+ \rightarrow \pi^+ \pi^+ K^- \ (B.R. = 9.46\%)$ from Jakub Kvapil (Board ID: I03)
 - $D^+ \rightarrow \phi \pi^+ \rightarrow \pi^+ K^- K^+ \ (B.R. = 0.27\%)$
D_S^+/D^0 ratio

- D_S^+/D^0 ratio significantly larger than fragmentation baseline
 - ee/ep/pp average: 0.132
 - M Lisovyi, et. al. EPJ C 76, 397 (2016)
- Comparable enhancement in 0-10% and 10-40%

0-10% data points shifted to the right for clarity
D_s^+/D^0 ratio: RHIC vs. LHC

- Comparable ratio between RHIC and LHC in overlapping p_T range

ALICE: JHEP 03, 082(2016)
D_s^+ / D^0 ratio: data vs. PYTHIA

- Observed strong enhancement with respect to PYTHIA prediction
D_s^+/D^0 ratio : Data vs Model

- Observed strong enhancement with respect to PYTHIA calculation
- Measured ratio is also larger than TAMU model (~10-40%) prediction

- D_s^+/D^0 for TAMU: $R_{AA}^{TAMU}(D_s^+)/R_{AA}^{TAMU}(D)\times0.1869$

TAMU: H. Min et al. PRL 110, 112301 (2013)
D_s^+/D^0 ratio: charm vs. light quark

- Similar amplitude as light hadron at 3.5-8 GeV/c, but smaller enhancement at 2.5-3.5 GeV/c.
Summary

- First measurement of Λ_c^+ production in heavy-ion collisions
 - $\Lambda_c^+/D^0 = 1.3 \pm 0.3{\text{(stat)}} \pm 0.4{\text{(sys)}}$, PYTHIA 0.1-0.15
 - Ko model with coalescence hadronization and thermalized charm quarks consistent with our measurement
- Enhancement of D_s^+/D^0 ratio with respect to PYTHIA prediction
 - TAMU model underestimates the enhancement in 10-40% centrality
- Observed Λ_c^+/D^0 (3-6 GeV/c) and D_s^+/D^0 (3.5-8 GeV/c) ratios comparable with light hadrons
- Outlook
 - In 2016, STAR collected 2 billion Au+Au events
 - More precise measurements of $\Lambda_c^+ R_{cp}$ and $D_s^+ v_2$ are underway.
Thanks
Compare with QM2015

![Graph comparing D_s/D_0 with p_T (GeV/c) for Au+Au at 200 GeV. The graph shows data points for QM2015 (10-40%) and 10-40% in red, with error bars. The fragmentation baseline is indicated by a yellow line.](image-url)
Strangeness enhancement

\[\frac{c\bar{s}}{c\bar{u}} \]

\[\frac{d\bar{s}}{d\bar{u}} \]

\[\frac{s\bar{s}}{s\bar{u}} \]

Au+Au @ 200 GeV

STAR Preliminary

Long Zhou/USTC