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Major Themes from Lattice
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Major Themes from Lattice

In view of the RHIC Beam
Energy Scan-II in 2019-20
it is important to have
control over the Equation
of State for � B =T � 3.
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Major Themes from Lattice

In view of the RHIC Beam
Energy Scan-II in 2019-20
it is important to have
control over the Equation
of State for � B =T � 3.

Measure the curvature of
chiral and freezeout curves
expected from QCD
thermodynamics.

Look for possible existence
and bracket the position of
critical end-point in the
phase diagram.
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Basic observables

One of the methods to circumventsign problemat �nite � :
Taylor expansion of physical observables around� = 0 in powers of
�= T [Bi-Swansea collaboration, 02]

P(� B ; T )
T 4 =

P(0; T )
T 4 +

� � B

T

� 2 � B
2 (0; T )
2T 2 +

� � B

T

� 4 � B
4 (0)
4!

+ :::

P2 P4

The series for� B
2 (� B ) should diverge at the critical point. On �nite

lattice � B
2 peaks, ratios of Taylor coe�cients equal, indep. of volume

[Gavai& Gupta, 03]
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Challenges for Lattice computations

The 
uctuations of conserved charges can be expressed in terms of Quark
no. susceptibilities (QNS).
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uD � 1
s D

0
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Higher derivatives! more inversions
Inversion is the most expensive step on the lattice !

Why extending to higher orders so di�cult?
� Matrix inversions increasing with the order
� Delicate cancellation between a large number of terms for higher order

QNS.
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Recent developments: A new method to introduce�

The staggered fermion matrix used at �nite� [Hasenfratz, Karsch, 83]

D(� )xy =
3X

i =1

� i (x)
h
Uy

i (y)� x;y+ î � Ui (x)� x;y� î

i

+ � 4(x)
h
e� aUy

4(y)� x;y+ 4̂ � e� � aU4(x)� x;y� 4̂

i
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One can also add� coupled to theconserved number densityas in
the continuum.

D(0)xy �
� a
2

� 4(x)
h
Uy

4(y)� x;y+ 4̂ + U4(x)� x;y� 4̂

i
:
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Pros and Cons

Linear method:D0 =
P

x;y N(x; y), and
D00= D000= D0000::: = 0

in contrast to the Exp-prescription, all derivatives are non-zero.
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Pros and Cons

Linear method:D0 =
P

x;y N(x; y), and
D00= D000= D0000::: = 0

in contrast to the Exp-prescription, all derivatives are non-zero.

No. of inversions signi�cantly reduced for higher orders in linear
method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8
for staggered fermions.[Gavai & Sharma, 12]

Linear method:� n have additional zero-T artifacts. ! explicit
counter termsneeded for� 2;4, discussed in detail[Gavai & Sharma, 15]

In Exp method:counter termsalready at the Lagrangian level. We
use this method for� B

n , n = 2 ; 4.

Sayantan Sharma Quark Matter 2017 Chicago Slide 8 of 21



Our Set-up

V = N3a3 , T = 1
N� a . We useN� = 6 ; 8; 12; 16 lattices for � 2;4 and

N� = 6 ; 8 for higher order 
uctuations.

Box size:m� V 1=3 > 4

Input ms physical andmG
� = 160 MeV for T > 175 MeV andmG

� = 140
MeV for T < = 175 MeV.

Calculating explicitly the lowest eigenvalues improves performance of the
fermion inverter.
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EoS in the constrained case

In most central heavy-ion experiments typically:
nS = 0 ; Strangeness neutrality,
nQ
nB

= nP
nP + nN

= 0 :4.
[Bi-BNL collaboration, 1208.1220]

For lower
p

s collisions:Need to understand baryon stopping!
Imposes non-trivial constraints on the variation of� S and � Q .
Possible to vary them by only varying� B through

� S = s1� B + s3� 3
B + s5� 5

B + ::::

� Q = q1� B + q3� 3
B + q5� 5

B + ::::
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Central values ofP4; P6 alreadydeviate from Hadron Resonance gas model
at T > 145 MeV ! need to analyze the errors onP6 better.

P6 hascharacteristic structureat T > Tc ! remnant of the chiral
symmetry due to the light quarks. E�ects ofUA(1) anomaly?

Essentiallynon-perturbative! cannot be predicted within Hard Thermal
Loop perturbation theory.
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EoS in the constrained case

The EoS for the constrained case is well under control for� B =T � 2:5 with
� 6.

Full parametric dependence forNB on T available inarxiv: 1701.04325.

Expanding to� B =T = 3 , need to calculate� 8!
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Summary for the EoS

Continuum estimates from two di�erent fermion discretization agree for
� B =T � 2.
[Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494].

Steeper EoS for RHIC energies compared to LHC energy.
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Baryon number density
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For strangeness neutral
system, e�ect is milder.

� 6 contribution is30-times larger than in
pressure.

N(� B )
T 3 =

� B

T
� B

2 (0) +
1
2

� � B

T

� 4
� B

4 (0)

+
1
4!

� � B

T

� 6
� B

6 (0) + :::

Strongly sensitive to the singular partof � B
6 .
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Curvature of freeze-out line

The lines of constantf � � or p is characterized as:

T f (� B ) = T0

�
1 � � f

2

�
� B
T0

� 2
� � f

4

�
� B
T0

� 4
�

For 145� T � 165 MeV: 0:0064� � P
2 � 0:0101; 0:0087� � �

2 � 0:012.
Consistent with the curvature of the chiral 'crossover' transition curve
0:0066(7) to 0:013(3). [arxiv:1011.3130, 1507.03571, 1507.07510, 1508.07599]

For � B =T � 2 the contribution from� 4 to T f (� B ) within errors of� 2.
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Curvature of freeze-out line: Final summary

Di�erent LCP's agree within2 MeV for � B =T � 2 for 3 initial choices ofT0.

For linesP = const, the entropy density changes by15%! better
description of LCP for viscous medium formed in heavy-ion collisions.
[Bi-BNL-CCNU collaboration, 1701.04325].

STAR results give a steeper curvature.
arXiv:1412.0499.

Agreement with the recent ALICE
results. arXiv:1408.6403.

Consistent with phenomenological
models.Becattini et. al., 1605.09694.

For more details,
talk by Frithjof Karsch, Wed, 2:40 pm.
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Critical-end point search from Lattice

The series for� B
2 should diverge at the critical point. On �nite lattice ratios

of Taylor coe�cients equal, indep. of volume[Gavai& Gupta, 03]

Radius of convergence from Taylor expansion:r2n �
r

2n(2n � 1)
�
�
�

� B
2n

� B
2n+2

�
�
� .

De�nition is true for n ! 1 . How largen could be on a �nite lattice?
New studies from Taylor expansions and imaginary� sets a current bound
for CEP to be� B =T > 2 [Bielefeld-BNL-CCNU, 1701.04325, D'Elia et. al., 1611.08285 ] though
some studies point to a lower bound.[Datta et. al., 1612.06673, Fodor and Katz, 04]
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Outlook

Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For� B =T < 2 !

p
sNN � 11 GeV already under control with� B

6 .
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The lines of constant�; p consistent with LQCD estimates of curvature of
chiral crossover line.
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Outlook

Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For� B =T < 2 !

p
sNN � 11 GeV already under control with� B

6 .

Analysis of� B
8 important to estimate the errors on the EoS measured with

the sixth order cumulants and going towards� B =T = 3 .

The lines of constant�; p consistent with LQCD estimates of curvature of
chiral crossover line.

Higher order cumulants will also help in bracketing the possible CEP. Most
LQCD calculations suggest� B (CEP)=T � 2.
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Backup: Nature of the divergences for higher order
susceptibilities

For any ordern, the artifacts � O (an� 4).
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Explicitly checked in free theory as well as for quenched QCD and
with HISQ fermions with nearly physical pion mass.
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