Multiplicity fluctuations and collective flow in small colliding systems

Koji Kawaguchi1)

In collaboration with
Koichi Murase2) and Tetsufumi Hirano1)

1) Department of Physics, Sophia University, Japan.
2) Department of Physics, The University of Tokyo, Japan.
Contents

- Introduction
- Integrated dynamical model
- Results
- Summary
Contents

- Introduction
- Integrated dynamical model
- Results
- Summary
Collectivity in small systems

Purpose of this study

Analysis of collectivity in small colliding systems from an integrated dynamical model

Mass ordering for identified hadrons

Consistent with hydrodynamic flow picture

P. Bozek, W. Broniowski, P. Romatschke, K. Werner, B. Schenke, R. Venugopalan, G. Y. Qin,

*Caveat: Mass ordering without flow

Contents

- Introduction
- Integrated dynamical model
- Results
- Summary
1. Initial state
 MC Glauber model + PYTHIA

2. QGP fluid
 Fully (3+1) dimensional viscous hydrodynamics

3. Particlization
 Cooper-Frye formula

4. Hadron gas
 Hadron cascade (JAM)

Integrated dynamical model

Integrated dynamical model

- **1. Initial state**
 - MC Glauber model + PYTHIA

- **2. QGP fluid**
 - Fully (3+1) dimensional viscous hydrodynamics

- **3. Particlization**
 - Cooper-Frye formula

- **4. Hadron gas**
 - Hadron cascade (JAM)

Asymmetric longitudinal profile

Rapidity triangle/trapezoid clearly observed in d+Au collision at RHIC

Modified BGK model

Number of participants \((N_A, N_B)\) from MC-Glauber model

Hadronic string formation

\(-Y_{\text{beam}} \leftrightarrow \text{rapidity} \rightarrow Y_{\text{beam}}\)

Rapidity dependence

One string formation

\[Y \]
Rapidity dependence

Rapidity distribution in a pp collision at 200 GeV

PYTHIA
Rapidity dependence

Rapidity distribution in a pp collision at 200 GeV

\(\frac{dN_{pp}}{dY} \)

\(-Y_{\text{beam}} \leftrightarrow \text{rapidity} \rightarrow Y_{\text{beam}}\)
Rapidity dependence

Rapidity distribution in a pp collision at 200 GeV

Fluctuations of multiplicity and longitudinal profile
Initial profile

Particles generated by PYTHIA

Each particle associated with Gaussian function

Initial entropy density distributions

Transverse profile \((\eta_s = 0)\)
Setting

◆ Collision systems: p/d/\(^3\)He+Au at \(\sqrt{s_{NN}} = 200\) GeV (RHIC)
 p+Pb at \(\sqrt{s_{NN}} = 5.02\) TeV (LHC)

◆ Initial conditions: MC Glauber model + PYTHIA

◆ Viscous hydrodynamics:
 - EoS: s95p-v1.1
 \[
 \begin{align*}
 \text{Lattice QCD (HotQCD)} \\
 \text{Resonance gas (JAM)}
 \end{align*}
 \]
 - Shear viscosity: \(\eta/s = 1/4\pi\)
 - Initial time: \(\tau_0 = 0.6\) [fm]

◆ Cooper-Frye formula:
 Switching temperature \(T_{sw} = 155\) [MeV]

◆ Hadron cascade: JAM
Viscous hydrodynamic simulations

$d+Au$ 200 GeV

$T = 155$ MeV

^3He+Au 200 GeV

$T = 155$ MeV
Contents

- Introduction
- Integrated dynamical model
- Results
- Summary
Multiplicity distributions

The larger colliding nucleus, the higher multiplicity

- Fluctuations of multiplicity
- Utilization for centrality cut
Pseudorapidity distributions

LHC

- min. bias

ALICE

- \(p+Pb \)

RHIC

- PHOBOS \(p+Au \)
- \(d+Au \)
- \(^3He+Au \)

Rapidity triangle/trapezoid picture works quite well

p_T distributions

Reasonable description of transverse dynamics

Flow harmonics vs p_T in $d/^{3}\text{He}+\text{Au}$

QGP fluid + hadronic gas picture works in $d/^{3}\text{He}+\text{Au}$ collisions

v_2 vs p_T in p+A

Smaller than experimental results

Need a sophisticated model in p+A collisions

v_2 vs pseudorapidity

Asymmetric shape of $v_2(\eta)$
Contents

- Introduction
- Integrated dynamical model
- Results
- Summary
Summary

◆ Analysis of flow observables in small colliding systems at LHC and RHIC energy

◆ Development of a new hydrodynamic initialization model based on MC-Glauber + PYTHIA

QGP fluid + hadronic gas picture works in d/3He+Au collisions

Our results smaller than experimental data in p+A collisions
Back up
Event generator PYTHIA8

\[
\frac{dN_{\text{ch}}}{d\eta} \\
\eta
\]

\[
N_{\text{event}} \\
N_{\text{ch}}
\]

PYTHIA work very well at the RHIC energy

Initial entropy density

\[s_0(\tau_0, \eta_s, x_\perp) = \frac{K}{\tau_0} \sum_i \frac{1}{\sqrt{2\pi \sigma_\eta^2}} \frac{1}{2\pi \sigma_\perp^2} \exp \left[-\frac{(x - x^i)^2 + (y - y^i)^2}{2\sigma_\perp^2} - \frac{(\eta_s - \eta_s^i)^2}{2\sigma_\eta^2} \right] \]

\[\tau_0 = 0.6 \text{ [fm]} \]

\[\sigma_\perp = 0.1 \text{ [fm]} \]

\[\sigma_\eta = 0.3 \]

\[\eta_s^i \text{ from MC Glauber + PYTHIA} \]

\[K = 5.6 \text{ for RHIC energy} \]

\[= 5.0 \text{ for LHC energy} \]

\[x^i, y^i, \eta_s^i \]
Rejection sampling

One AA event
\[\rightarrow N_A \times N_B \text{ PYTHIA events} \]

Weight in one PYTHIA event
\[w(\eta) = \frac{1}{2} \left(\frac{Y_b + \eta}{Y_b} \frac{1}{N_A} + \frac{Y_b - \eta}{Y_b} \frac{1}{N_B} \right) \]

\[N_A N_B w(\eta) = \begin{cases} N_A & (\eta = -Y_b) \\ N_B & (\eta = Y_b) \end{cases} \]
Initial profile at RHIC

Transverse profile \((\eta_s = 0)\)

Longitudinal profile \((x = 0 \text{ [fm]})\)
ν_2 vs centrality

Increase of ν_2 with multiplicity
Hadron cascade effects in d+Au

Large fraction of v_2 generated in QGP fluid
Hadron cascade effects in $^3\text{He}+\text{Au}$

Large fraction of v_2 generated in QGP fluid