Contribution ID: 533

Dilepton production in p+p, Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV and U+U collisions at $\sqrt{s_{NN}}$ =193 GeV

Tuesday 7 February 2017 08:30 (20 minutes)

Dileptons (l^+l^-) are produced throughout all stages of heavy-ion collisions and escape with minimum interaction with the strongly interacting medium. For this reason, l^+l^- pair measurements play an essential role in the study of the hot and dense nuclear matter created in heavy-ion collisions. Dileptons in the low invariant mass region (up to $M_{ll} \sim 1^{\circ} \text{GeV/c}^2$) retain information about the in-medium modification of vector mesons while dileptons in the intermediate mass region (extending out to $M_{ll} \sim 3 \text{ GeV/c}^2$) predominantly originate from charm decays and thermal radiation of the medium. At higher invariant masses, recent studies of J/ψ yields in peripheral A+A collisions by the ALICE cite{alice} and STAR collaborations showed significant excess at very low momentum transfers ($p_T < 0.3^{\circ} \text{GeV/c}$). These observations may point to evidence of coherent photoproduction of J/ψ in hadronic interactions which conflicts with traditional knowledge of the coherent photoproduction mechanism. It is interesting to investigate the e^+e^- pair production in a wider invariant mass region ($M_{ee} < 4 \text{ GeV/c}^2$) at very low p_T in heavy-ion collisions for different centrality bins in order to study the production mechanism.

This talk will cover e^+e^- spectra with various invariant mass and p_T differentials in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV. The structure of the t (t = p_T^2) distributions of these mass regions will be shown and compared with the same distributions in ultra-peripheral collisions. Additionally, this talk will cover first measurements of $\mu^+\mu^-$ invariant mass spectra from STAR's recently installed Muon Telescope Detector (MTD) in p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Physics implications of the $\mu^+\mu^-$ results will be discussed in the context of STAR's published e^+e^- results.

Preferred Track

Electromagnetic Probes

Collaboration

STAR

Author: BRANDENBURG, James (Rice University)

Presenter: BRANDENBURG, James (Rice University)

Session Classification: Parallel Session 1.3: Electromagnetic Probes (I)

Track Classification: Electromagnetic Probes