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Classical Yang-Mills (CYM) calculations have been used to
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model the pre-thermal evolution of the strongly interacting .
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e More highly occupied systems enter the asymptotic regime faster.
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Extractmg plasmon e The late-time evolution is consistent with a ¢ /" power law |3].
DR Effective dispersion relation with Coulomb gauge fields e The DR method depends on maximum *°/a? in fit (DR 1 vs. DR 3).
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o Left: infrared cutoff (lattice size LA) dependence with two different ultraviolet cutoffs
(lattice spacings a,A = 0.3 |up|, a,A = 0.5 [down|). We observe no significant IR-
cutoff dependence.
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Quantum fluctuatio e Right: ultraviolet cutoff dependence. The HTL and UE methods seem to converge

Due to plasma instabilities quantum fluctuations can have to same continuum limit.
a very dramatic impact on the equilibration of the clas-

sical field system. The fluctuation spectrum is very UV- Fluctuations on the lattice [2]
divergent, which makes the numerical treatment difficult.

To control these problems we explicitly linearize the fluctu- The time-evolution equation for the fluctuation of the electric field is straightforward
ations on the lattice on mode by mode basis. ]
Continuum equations of motion of linearized fluctuations: a§€i< t+ dt) — agei( 1) — dt Z ; (ai(x)
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Gauss’s law (for the fluctuations) reads —a;(x+1—-)J—=>x+1—-x)0, ;(x)-0; ;(x)a;(x =7 — X)) :
d ah

c(x,t) = [D,L-, ei} +ig {ai,Ei} = 0.

with the background field plaquette O, ; (x) and the parallel transported fluctuation

Conclusions a;(x+ 17— x) = U(x)a;(x +2)U] (x).

e We have studied the plasmon mass scale in pure glue The subscript ah stands for the antihermitean traceless part.

QCD using 3 methods. The DR method agrees with

. Problem The naive discretization of a, = e’ does not conserve the discretized Gauss’s law:
the other methods within a factor of two.
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e The UE and HTL methods agree in the continuum c(x,t) = Z —z{ez(x) —e'(x—71—x)+tilag,x—-1T—x),E'(x—17— X)]}
limit. i ¢
e The UK method is the most stable against varying Solution We construct the time-evolution equation of a; by explicitly requiring that it
ultraviolet and infrared cutofts. conserves Gauss’s law.
e We have also derived and implemented linearized Result The equation (in the fundamental representation of SU(2)) is
lattice equations for fluctuations in CYM, conserving
Gauss’s law exactly. ' - . . . ] .
a;(t+dt) = S EZ,—’i( oie’ ). —eu> — {Ez, o0 ()0, —|—dt62|l—|—al;| (1).
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