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Introduction & initial conditions [1]
Classical Yang-Mills (CYM) calculations have been used to
model the pre-thermal evolution of the strongly interacting
matter created in ultrarelativistic heavy-ion collisions. Our
aim here is to study the limits of the quasiparticle picture
in real time classical Yang-Mills theory on a lattice in 3
spatial dimensions.
We sample our gauge fields so that the initial quasiparticle
spectrum satisfies:
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Extracting plasmon mass, 3 methods [1]
DR Effective dispersion relation with Coulomb gauge fields
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fit as ω2 = ak2 + ω2
pl.

UE Add a uniform electric field at t = t0, measure oscilla-
tions of electric and magnetic energy vs t.

HTL Perturbation theory, Hard Thermal Loops
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Quantum fluctuations [2]
Due to plasma instabilities quantum fluctuations can have
a very dramatic impact on the equilibration of the clas-
sical field system. The fluctuation spectrum is very UV-
divergent, which makes the numerical treatment difficult.
To control these problems we explicitly linearize the fluctu-
ations on the lattice on mode by mode basis.
Continuum equations of motion of linearized fluctuations:
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Gauss’s law (for the fluctuations) reads
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= 0.

Conclusions
• We have studied the plasmon mass scale in pure glue

QCD using 3 methods. The DR method agrees with
the other methods within a factor of two.

• The UE and HTL methods agree in the continuum
limit.

• The UE method is the most stable against varying
ultraviolet and infrared cutoffs.

• We have also derived and implemented linearized
lattice equations for fluctuations in CYM, conserving
Gauss’s law exactly.
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Results & dependence on the lattice cutoffs[1]
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• More highly occupied systems enter the asymptotic regime faster.

• The late-time evolution is consistent with a t−2/7 power law [3].

• The DR method depends on maximum k
2
/∆2 in fit (DR 1 vs. DR 3).
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• Left: infrared cutoff (lattice size L∆) dependence with two different ultraviolet cutoffs
(lattice spacings as∆ = 0.3 [up], as∆ = 0.5 [down]). We observe no significant IR-
cutoff dependence.

• Right: ultraviolet cutoff dependence. The HTL and UE methods seem to converge
to same continuum limit.

Fluctuations on the lattice [2]
The time-evolution equation for the fluctuation of the electric field is straightforward
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,

with the background field plaquette �i,j (x) and the parallel transported fluctuation

aj(x + ı̂→ x) ≡ Ui(x)aj(x + ı̂)U†i (x).

The subscript ah stands for the antihermitean traceless part.

Problem The naive discretization of ȧi = ei does not conserve the discretized Gauss’s law:
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}
.

Solution We construct the time-evolution equation of ai by explicitly requiring that it
conserves Gauss’s law.

Result The equation (in the fundamental representation of SU(2)) is
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Here �0i = eiE
idt is the “timelike plaquette”. The notations ⊥ and ‖ refer to components

of ai and e
i that are perpendicular or parallel to Ei in color space.

We have also tested a numerical implementation of these equations and verfied that the
Gauss’s law is conserved within machine precision and that the linearization works.


