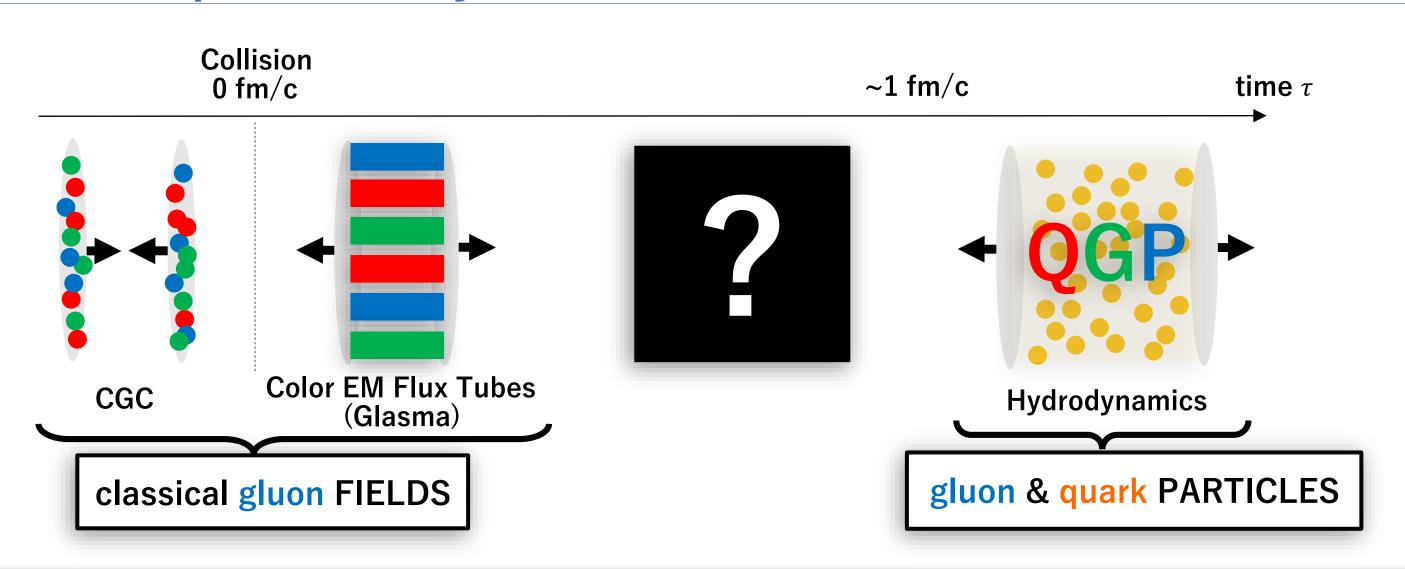
Quark and Gluon Production from an Expanding Strong Color Electric Flux Tube

1. INTRODUCTION

1-1. Pre-equilibrium dynamics of HIC is a BIG MISSING PIECE



1-2. Aim of this study

✓ Many studies on this topic have been done:

<u>Physical picture</u>: Schwinger mech.; NO instability; Weibel instability; bottom up thermalization ... <u>Theory</u>: classical statistical approx.; 2PI; effective kinetic theory; classical YM; flux tube model ...

- ✓ But, there remain many unanswered questions such as
 - ? How the transition from the classical field to quantum particles occur
 - ? How (not only gluons but also) quarks are produced
 - ? How the system isotropizes (or not)
- ✓ We discuss these points by studying quark & gluon particle production from an expanding classical gauge field based on QCD within mean field approximation.

2. THEORY

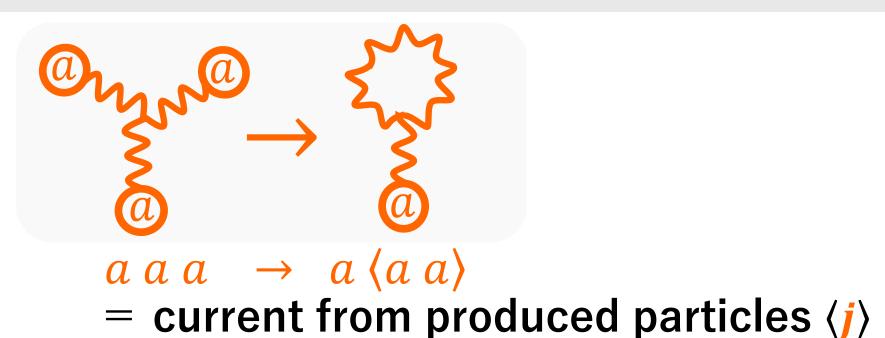
* Only the gluon part is explained here. The quark and ghost parts can be formulated in the same way.

$$L_{\text{QCD}} = -\frac{1}{2} \text{tr} \left[F^{\mu\nu} F_{\mu\nu} \right] + L_{\text{quark}} + L_{\text{FP+GF}}$$

STEP 1: Separate the total gauge field (A) into a classical field $(\bar{A} \equiv \langle A \rangle)$ and a quantum fluctuation (a) as $A = \bar{A} + a$ STEP 2: Expand Lagrangian in terms of the quantum fluctuation a

$$L_{\text{QCD}} = -\frac{1}{2} \text{tr} \left[\bar{F}^{\mu\nu} \bar{F}_{\mu\nu} \right] + \left(\mathbf{1^{st}} \text{ order in } \mathbf{a} \right) + \left(\mathbf{2^{nd}} \text{ order in } \mathbf{a} \right) + g \times \left(\mathbf{3^{rd}} \text{ order in } \mathbf{a} \right) + g^2 \times \left(\mathbf{4^{th}} \text{ order in } \mathbf{a} \right) + L_{\text{quark}} + L_{\text{FP+GF}}$$

- - STEP 3: Adopt *mean field approximation* for the non-linear (higher than 3^{rd} order in a) terms



 $L_{\rm OCD} = (up to 2^{nd} order in the quantum fluctuation a)$

<u>STEP 4</u>: Solve the Euler-Lagrange equations for a and \bar{A}

$$\mathbf{0} = \left[(\nabla + ig\overline{A})^2 g^{\mu\nu} + \langle M^{\mu\nu} \rangle \right] a_{\nu} \quad \text{for the quantum fluctuation } a, \quad \text{and} \quad \langle j^{\mu} \rangle = \nabla_{\nu} \left[\overline{F}^{\nu\mu} + \langle f^{\nu\mu} \rangle \right] \quad \text{for the classical field } A$$

Advantages: The equations 🗸 ar

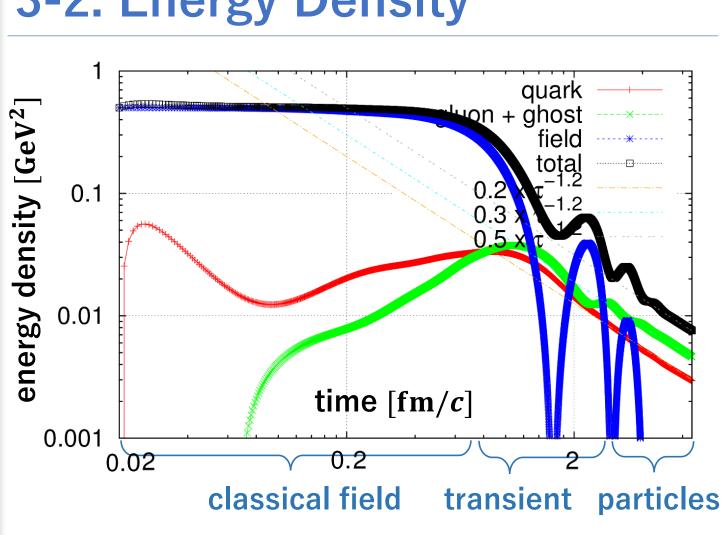
- ✓ are simple and easy to understand their physical meanings
- ✓ include higher order quantum effects (within the mean field treatment)
- describe a smooth transition from the classical field to quantum particles
- ✓ are numerically feasible

3. NUMERICAL RESULTS

3-1. Numerical Setup

- ✓ $SU(N_c = 3)$ QCD with $N_f = 3$ massless quarks
- ✔ Homogeneity in space: Boost invariance & transverse symmetry
- ✓ Longitudinal color *electric* field at an initial time τ_0 : $\vec{E}(\tau_0) = (0, 0, E_0)$, $\vec{B}(\tau_0) = (0, 0, 0)$
- ✓ Neglect the higher order term $\langle M \rangle = 0$ (i.e., collisionless limit)
- ✓ Parameter setting: $E_0 = 1 \text{ GeV}^2$, g = 1, $\tau_0 = 0.1 \text{ GeV}^{-1}$

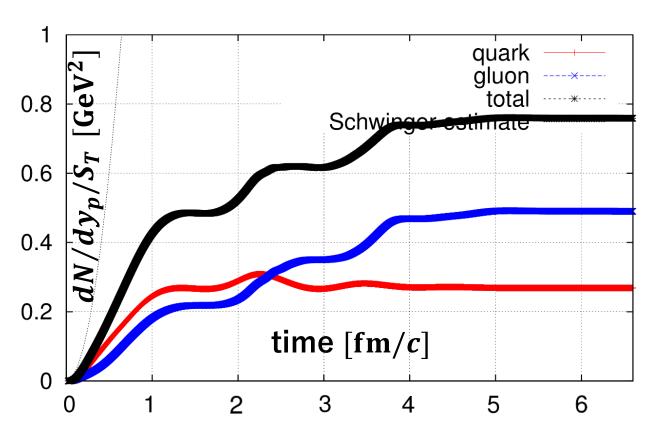
3-2. Energy Density



✓ The classical field decays into quark & gluon particles within a few fm/c

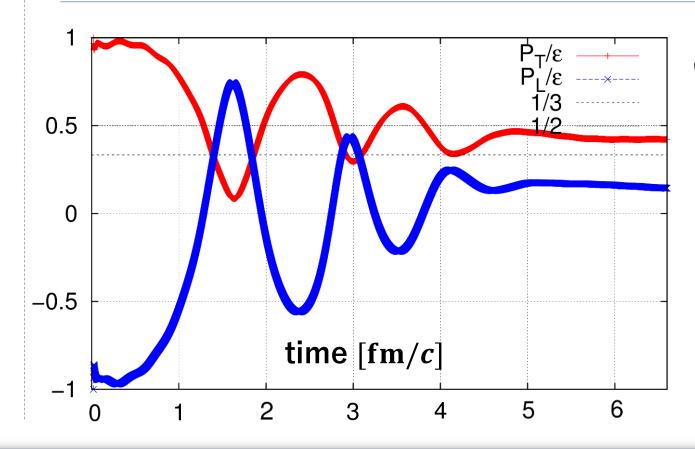
- 3-3. Longitudinal Distribution $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ quark gluon $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ at $p_T \sim 0$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$ $(2\pi)^3 \frac{1}{dp_T^2 dp_\eta dx_T^2 d\eta}$
- ✔ Plasma oscillation
- ✔ Pauli blocking for quarks & Bose enhancement for gluons
- ✓ Red shift due to the longitudinal expansion

3-4. Number Density $dN/dy_p/S_T$



- ✓ Fast particle production
 - In particular, quark production is very fast $au \lesssim 1 \ \mathrm{fm}/c$
- ✓ Huge number of particles
 - Gluon dominates
 - 1,000 quarks + 2,000 gluons (for $S_T \sim \pi (7 \ fm)^2$)

3-5. Isotropization



- ✓ System becomes less anisotropic as the classical field decays
 - $P_L/P_T \sim 0.5$ (even if collisionless)

4. SUMMARY

What we did

We studied quark & gluon production from an expanding classical gauge field to discuss the pre-equilibrium dynamics of HIC

What we have learned

Adopting mean field approx. to QCD, we have learned that

- \checkmark classical field decays into quarks & gluons within a few fm/c
- ✓ how the transition from the classical field to particles occurs
- **✓** huge number of quarks & gluons are produced quickly **✓** the anisotropy becomes moderate as $P_L/P_T \sim 0.5$

What to do

- ✓ higher order effects (e.g. collisions)
- inhomogeneity in transverse plane
- ✓ longitudinal magnetic field
- ✓ photon/di-lepton production