In heavy-ion collision experiment, quarkonium suppression is the one of important probe for QGP formation. Recently lattice QCD and perturbative calculation reveal that quarkonium potential has an imaginary part. Stochastic potential model naturally explains the imaginary part as the result of the interaction between quarkonium and QGP, or environment.

- 1. Introduction

- Experimental Results of J / ψ and Υ suppression

In central collisions, suppression is stronger. Excited state is much more suppressed.

$$
\begin{aligned}
& \text { - Static Potential Model Matsui and Satz, Phys. Lett. B178 (1986) } 416 \\
& \text { Confining potential (T=0) } \quad V=-\frac{\alpha}{r}+\sigma r \\
& \text { Debye screened potential (T>Tc) } V=-\frac{\alpha}{r} \exp \left(-\frac{r}{r_{\mathrm{D}}}\right) \\
& \text { - Real-time Potential Model } \quad \text { Laine et al., ,HHEP } 03 \text { (2007) } 054 \\
& \text { Wilson Loop perturbative calculation } \\
& \qquad V=-\frac{g^{2} C_{F}}{4 \pi}\left[m_{D}+\frac{\exp \left(-m_{D} r\right)}{r}\right]-\frac{i g^{2} T C_{F}}{4 \pi} \phi\left(m_{D} r\right) \\
& \qquad \phi(x)=2 \int_{0}^{\infty} \frac{d z z}{\left(z^{2}+1\right)^{2}}\left[1-\frac{\sin (z x)}{z x}\right]
\end{aligned}
$$

\rightarrow How should we interpret the imaginary part?

2. Stochastic potential model

Akamatsu and Rothkopf, phys. rev. D 085 (2012), 105011
When we consider a quarkonium in QGP as an open quantum system, we can extract quarkonium information by tracing out environment degrees of freedom from total system.

Stochastic Schrödinger equation

$i \frac{\partial}{\partial t} \Psi_{\mathrm{Q} \overline{\mathrm{Q}}}(\boldsymbol{X}, t)=[H(\boldsymbol{X})-i\{D(\mathbf{0})-D(|\boldsymbol{x}-\boldsymbol{y}|)\}+\Theta(\boldsymbol{X}, t)] \Psi_{\mathrm{Q} \overline{\mathrm{Q}}}(\boldsymbol{X}, t)$

Decoherence

We approximate $D(r)=\gamma \exp \left(-\frac{r_{Q \bar{Q}}^{2}}{l^{2}}\right)$ with correlation length l.
The noise in potential brings about the phase rotation.

- Master Equation
$\rho_{Q \bar{Q}}$ is defined as $\rho_{Q \bar{Q}}\left(X, X^{\prime}, t\right) \equiv\left\langle\Psi_{Q \bar{Q}}(X, t) \Psi_{Q \bar{Q}}^{*}\left(X^{\prime}, t\right)\right\rangle_{\Theta}$
Master equation after tracing out the c.m.s. motion

$$
\frac{\left.\partial \rho_{Q \bar{Q}(\boldsymbol{r}} \boldsymbol{r}^{\prime}, t\right)}{\partial t}=\frac{h(\boldsymbol{r})-h\left(\boldsymbol{r}^{\prime}\right)}{i \hbar} \rho_{Q \bar{Q}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t\right)+\frac{f\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)}{\hbar} \rho_{Q \bar{Q}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t\right)
$$

By expanding the density matrix with a complete set of in-medium Hamiltonian, we get the time evolution of admixture,

$$
\begin{aligned}
& \rho_{Q \bar{Q}}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, t\right)=\sum_{n m} c_{n m}(t) \psi_{n}(r) \psi_{m}^{*}\left(r^{\prime}\right) \\
& \quad \longrightarrow \dot{c}_{n m}(t)=\frac{\epsilon_{n}-\epsilon_{m}}{i} c_{n m}(t)+\Sigma_{k l} \gamma_{n k, l m} c_{n m}(t)-\frac{1}{2} \Sigma_{k}\left\{\gamma_{n k} c_{k m}(t)+c n k(t) \gamma_{k m}\right\}
\end{aligned}
$$

3. Results

3-1. One-dimentional numerical calculation in a static QGP
By solving Stochastic Schrödinger equation, we calculate the survival probability of bottomonium in-medium ground state. $(T=0.4[\mathrm{GeV}])$

We confirm that smaller l (than $r_{\mathrm{Q} \overline{\mathrm{Q}}}$) brings about stronger decoherence

- Difference between the results using complex potential and stochastic potential

If we start from $c_{00}=1$ and $c_{i i}=0$ the slope at $\mathrm{t} \sim \mathrm{O}$ is
$\dot{c}_{00} \sim \gamma_{00,00}-\gamma_{00} \quad$ (stochastic) $\dot{c}_{00} \sim-\gamma_{00} \quad$ (complex)

Complex potential

overestimates the decay rate by including the scattering from ground state to itself.

3-2. One-dimentional numerical calculation
 In Bjorken-Expanding QGP

By solving Stochastic Schrödinger equation, we calculate the survival probability of states. Initial states are picked up from eigenstates of zero-temperature confining potential. Initial temperature set to $T_{0}=0.4[\mathrm{GeV}]$.

Excited states are affected earlier by decoherence than ground state. Charmonium is more affected by decoherence than bottomonium because of their radius.
These results are consistent qualitatively with experimental results R_{AA}

