

Prompt and nonprompt J/ψ modification in pPb collisions at 5.02 TeV with CMS

Songkyo Lee (Korea University) for the CMS Collaboration

- modification of nPDFs, energy loss, etc.

- (from the decay of B meson)

- - Signal: a Crystal Ball + a Gaussian

- $R_{pPb} \gtrsim 1$ in mid- and backward y_{CM}
- Suppression at forward and low p_T is suggested
- Three nPDF models^[3-6]: marginally lower than data lacksquare

High p_T : $R_{pPb} > 1$

5) Comparison

Low p_T : possible decrease of R_{pPb} for increasing y_{CM}

- $R_{pPb} \sim 1$ in all y_{CM} bins analyzed
- Possible enhancement at backward and low p_{T}

High p_T: R_{pPb} ~ 1

- Low p_T : possible decrease of R_{pPb} for increasing y_{CM}
- Precise measurements of charmonia and open beauty, extending previous measurements

Comparison to inclusive J/ ψ meson from the ALICE collaboration^[7]

Comparison to prompt and nonprompt J/ψ mesons from the ATLAS collaboration^[8]

Comparison to B+ meson (the CMS collaboration^[9])

6) Summary

- Production of prompt and nonprompt J/ψ is separately studied in pPb collisions
- Prompt J/ ψ R_{pPb} is above unity at mid- and backward rapidities, with a possible depletion in the most forward bin and low p_T (≤ 7.5 GeV/c)
- Nonprompt J/ ψ R_{pPb} is compatible with unity
- These measurements, covering a wide kinematic range and using only pp data at 5.02 TeV, provide new insight on nuclear matter effects on charmonium and open beauty production

References

[1] CMS Collaboration, HIN-14-009, arXiv:1702.XXXX [2] A.Andronic et al., Eur. Phys. J. C 76 (2016) 107 [3] R.Vogt, Phys. Rev. C 92 (2015) 034909 [4] K. J. Eskola et al., JHEP 04 (2009) 065 [5] K. Kovarik et al., Phys. Rev. D 93 (2016) 085037 [6] J.-P. Lansberg et al., Eur. Phys. J. C 77 (2017) 1 [7] ALICE Collaboration, JHEP 06 (2015) 055 [8] ATLAS Collaboration, arXiv:1509.06797 [9] CMS Collaboration, Phys. Rev. Lett. 116 (2016) 032301