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Introduction

Extend the state-of-art hybrid with jets!

Relativistic heavy ion collision at a glance
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What do we need to improve our understanding?
realistic dynamical description
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Collisional Energy Loss

2 — 2 elastic processes between hard and thermal partons [10, 11].
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where Co, and Dy, are constants that depend on which kind of partons are interact-
ing.
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Full event generator : includes fluctuations in every stage

IP-Glasma pre-thermalization dynamics

nucleon + partonic fluctuations

In the IP-Glasma picture [1, 2], partons with
high « provide color sources for classical Yang-
Mills fields. The color gauge field in terms of
the path-orderd Wilson line is given by
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The fluctuation of color charges carried by high-z partons in nuclei are described as
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where g2 depends on the transverse position inside the nucleus. These fluctuations
are not present in the MC-Glauber model.
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MUSIC Hydrodynamics

Second-order viscous hydrodynamics

MUESIC [3] solves 3 + 1D hydrodynamic conservation equations 9, 7" (t,x) = 0,
along with the equations for the dissipative currents
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The transport coefficients are determined using the relaxation time and 14-moment
approximation [4].

Cooper-Frye particlization

Switching from hydro to particles

Hadrons are sampled on the freeze-out hypersurface X according to the Cooper-Frye
formula [5].
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where fj is the local equilibrium distribution function and the bulk [6] and shear [7]
viscous corrections are given by
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We assume a grand canonical ensemble where particles on each fluid cell are sampled
independently.

pr spectra (PID)
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Hybrid approach can be extended toward higher pr with jets.

Even though effects on pions and kaons are not significant, protons are largely af-
fected by hadronic re-scattering.
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It can be applied for hyperons with higher pr as well.

The hadronic re-scattering also has a relevant effects for the intermediate pr range.

Elliptic flow (PID)
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The hadronic re-scattering has significant effects
on the elliptic flow in the intermediate p; range.

The hadronic re-scattering increases v (pr) of identified hadrons in the intermedi-
ate pr range. This can affect the determination of jet-medium interaction in the QGP
phase.

0sf PRELIMINARY  UraDuwecol = -
o4+ Pb+Pb 1
5.02 TeV
T oo} 20-30%
S:a 02 |
0.1 |

shear+bulk
/s = 0.095 og=0.23
sw = 145 MeV

3 4
pr (GeV)

Hadronic re-scattering has also relevant effects on the hyperon v,.

UrQMD Cascade

Transport approach for dilute hadronic matter

UrQMD (Ultra-relativistic Quantum Molecular Dynamics) [8] is a transport model
dealing with the Boltzmann’s transport equation
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by performing scattering (and decay) in an N-body system.
e 55 baryon species and 32 meson species with masses up to 2.25GeV.

o Cross sections and decay rates based on the experimental data.

Nuclear modification factor
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QGP energy loss and hadronic re-scattering have different effects
on the particle yields.

While Raa significantly depends on the strong coupling as for higher pr, the
hadronic re-scattering has the larger effects in the intermediate pr range where
contributions from the thermal hadrons and minijets are comparable.

Conclusion

1. By combining production and energy-loss of jets in heavy ion collisions,
dynamical modelling can be extended to higher pr.

2. Our hybrid approach is applied for Pb+Pb collisions with /syy =
5.02TeV and /syny = 2.76 TeV at the LHC.

3. The final state spectra at the intermediate pr largely depend on
the hadronic re-scattering.
— Energy loss in the hadronic phase needs to be taken into ac-
count for understanding of jet-medium interaction.

References
[1] B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012).
[2] S. McDonald, et al., arXiv:1609.02958 (2016).
[3] B.Schenke, S. Jeon and C. Gale, Phys. Rev. C 82, 014903 (2010).
[4] G.S. Denicol, S. Jeon and C. Gale, Phys. Rev. C 90, no. 2, 024912 (2014).
[5] E Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
[6] P.Bozek, Phys. Rev. C 81, 034909 (2010).
[7] K. Dusling, G. D. Moore and D. Teaney Phys. Rev. C 81, 034907 (2010).
[8] S. Bass et al., Prog. Part. Nucl. Phys. 41 225-370 (1998).
[9] P. Arnold, G. Moore and L. Yaffe, JHEP 06 030 (2002)

[10] B.Schenke, C. Gale, G.-Y. Qin, Phys. Rev. C79, 054908 (2009)

[11] G.-Y. Qin, et al., Phys. Rev. Lett 100, 072301




