

NFN

D-meson production measurements in p-Pb collisions at $\sqrt{s_{\rm NN}}$ =5.02 TeV with ALICE

Andrea Festanti on behalf of the ALICE Collaboration

Università degli Studi di Padova – INFN Sez. di Padova

 K
 π
 ime
 π, K, p, ...

 D
 Hadron
 Gas

 Cross Over
 Cross Over

 Cross Over
 Cross Over

 Kinetic Freeze
 Cross Over

 Cross Over
 Cross Over

 L
 Cross Over

 <

Due to their large masses, heavy quarks are produced in hard partonic scattering processes on a short time-scale. In Pb-Pb collisions, initially-produced **charm** and **beauty** propagate through the medium interacting with its constituents. Heavy quarks are sensitive probes of the

✓ transport properties of the medium
 ✓ parton energy-loss mechanisms

The interpretation of the Pb-Pb results requires an understanding of **cold nuclear matter (CNM) effects** in the initial and final state (shadowing/gluon saturation at low parton fractional momentum, parton transverse momentum broadening, cold nuclear matter parton energy loss), which can be accessed studying **p-Pb collisions**.

D mesons were reconstructed in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV via their hadronic decay channels.

Yield extraction from an invariant-mass analysis of:

1. D-meson candidates selected on the basis of the **decay topology** by reconstructing the **secondary vertices** separated by a few hundred μ m from the interaction point

CROSS SECTION AND R_{pPb}

D⁰-meson p_{T} -differential cross section compared with the pp reference cross section scaled by the Pb mass number A = 208 [1]

D-MESON YIELDS vs. CHARGED-PARTICLE MULTIPLICITY

K⁻ π⁺ π⁺ $D^{*+} \rightarrow D^0 \pi^+$ $D_{c}^{+} \rightarrow \Phi \pi^{+}$

2. pairs of kaons and pions with opposite charge (unlike sign) after subtraction of the combinatorial background estimated with like-sign pairs, event mixing, track rotation, side-band fit \rightarrow it allows us to extend the D⁰ measurement to $p_T < 1 \text{ GeV}/c$

pp reference obtained by a pQCD-based energy scaling of the cross section measured at $\sqrt{s} = 7$ TeV [2]

Most precise measurement obtained using the results of the analysis without decay-vertex reconstruction in $0 < p_T < 2$ GeV/ *c* and those of the analysis with decay-vertex reconstruction for $p_T > 2$ GeV/*c*

 $d\sigma_{p-Pb,5.02TeV}^{promptD^{0}}/dy = 79.0 \pm 7.3(stat.)_{-13.4}^{+7.1}(syst.) \pm 2.9(lumi) \pm 1.0(BR) \text{ mb}$

 $d\sigma_{\rm p-Pb, 5.02TeV}^{c\bar{c}}/dy = 151 \pm 14(\text{stat.})^{+13}_{-26}(\text{syst.}) \pm 6(\text{lumi}) \pm 7(\text{FF}) \pm 5(\text{rap.shape}) \text{ mb}$

Measurement of the D^0 , D^+ , D^{*+} and D_s^+ mesons nuclear modification factor R_{pPb} [3]

D-meson yields show a **fasterthan-linear increase** with chargedparticle multiplicity at central rapidity [5].

Same increasing trend within uncertainties in all p_{T} intervals.

Similar behaviour observed in pp collisions but:

- high-multiplicity events in pp collisions affected by multi-parton interactions,
- high-multiplicity events in p-Pb collisions also originate from higher number of binary nucleon-nucleon collisions [min.bias p-Pb collisions:<N_{coll}>=6.9].

D-MESON Q_{pPb}

D-meson nuclear modification factor measured in 4 **centrality classes**: 0-20%, 20-40%, 40-60% and 60-100% [5]. Classes obtained slicing the

[1] ALICE, Phys. Rev. C 94 (2016) 054908
[2] R. Averbeck *et al.* arXiv:1107.3243
[3] ALICE, Phys. Rev. Lett. 113 (2014) 232301
[4] ALICE, JHEP 09 (2012) 112
[5] ALICE, JHEP 8 (2016) 1-44

andrea.festanti@cern.ch

*R*_{pPb} consistent with **unity**within uncertainties
Models including CNM
effects describe the data
within uncertainties

Suppression observed in central Pb-Pb collisions at high p_T [4] due to final-state effects induced by the hot partonic matter

energy deposited in neutron calorimeter on Pb-going side [ZNA].

 Q_{pPb} results in the different centrality classes are consistent with **unity** within the uncertainties.

Poster session, 06-02-2017