

LEADING ORDER PHOTON PRODUCTION IN NON-EQUILIBRIUM QGP

SIGTRYGGUR HAUKSSON, SANGYONG JEON, CHARLES GALE

1. INTRODUCTION

- ◆ Transport coefficients like shear and bulk viscosity are fundamental properties of thermal QCD.
- ◆ Photons could be an ideal probe to extract these viscosities from experimental results.
- ◆ Calculating viscous corrections boils

down to using a general momentum distribution in propagators:

 $n_{B/F}(|p^0|) \rightarrow f_{g/q}({\bf p})$

E.g. n_B is the Bose-Einstein distribution.

- \bullet In the real time formalism the number of degrees of freedom is doubled. Thus there are four propagators.
- \bullet In the r/a basis the bare propagators for quarks are

 S_r^0 $r_a^0=S^0_{\rm ret}=$ r a S_a^0 $\frac{1}{a r} = S^0_{\text{adv}} =$ a r S_r^0 $r \frac{0}{rr} =$ $\sqrt{1}$ $-f_q(\mathbf{p})$ \setminus $\left[S^0_{\rm ret} - S^0_{\rm adv}\right]$

2 $S^0_{aa}=0$

- ◆ Corrections have been calculated for two-to-two scattering diagrams [1], [2].
- ◆ We present a **first calculation of inelastic leading order channels out of thermal equilibrium.** They are just as important as two-to-two channels:
	- **–** Off-shell pair annihilation
	- **–** Quark bremsstrahlung
	- **–** Coherence between different scattering sites (LPM effect)

◆ Out of equilibrium we must go beyond the KMS condition and do explicit calculations.

◆ Production rate of photons with momentum k is given by

> k dR d^3k $\sim (i\Pi$ γ $\frac{\gamma}{12}$ μ μ

where Π^{γ} is the photon polarization tensor.

◆ The Feynman diagrams for Π γ \int_{12}^{γ} for the

◆ We focus on bulk viscous corrections where

 $f(\mathbf{p}) = f(p).$

- summed over all number of gluon rungs.
- ◆ Despite multiple vertices the diagrams contribute at leading order in g [3]:
	- **–** 1/g enhancement for soft gluons, $P \sim gT$, in the rr propagator:

Our calculation applies to any isotropic momentum distribution.

2. FORMALISM

 $n_B(p^0)\thicksim$ \overline{T} \overline{p}^0 ∼ 1 g

 m_{∞}^2 is the thermal mass and Γ the thermal decay width.

- ◆ In a non-equilibrium medium there is also a $1/g$ enhancement from soft gluons:
- \blacktriangleright The resummed rr propagator is

 Π_{\leq} and $\Pi_{>}$ are components of the gluon polarization tensor.

 $\Pi_<$ $\Pi_> - \Pi_<$ $= \boldsymbol{\Omega}$ \overline{T} \overline{p}^0 ∼ Ω g

- $\Omega[f]$ describes the resummed occupation number of soft gluons.
- ◆ Extending a sum rule from [4] we get

◆ We need resummed propagators. In equilibrium one can use the KMS relation to get

> $\boldsymbol{m}_{\boldsymbol{D}}^{\boldsymbol{2}}\left[f\right]$ is the non-equilibrium Debye mass. It describes screening of chromoelecric fields.

- ◆ In a non-equilibrium medium we also get pinching poles.
- \bullet The resummed rr quark propagators is

$$
S_{rr} = \left(\frac{1}{2} - n_F(p^0)\right) \left[S_{\text{ret}} - S_{\text{adv}}\right].
$$

occupation number is $\boldsymbol{F} := -\frac{\Sigma_{\leq}}{\Sigma_{\leq} - \Sigma_{\leq}}$ $\Sigma_{>}-\Sigma_{<}$ = $\int f_q(p)$, if $p^0 > 0$ $1 - f_q(p)$, if $p^0 < 0$

> Pauli blocking Pauli blocking

3. THE EQUILIBRIUM CASE

inelastic channels are

– Pinching poles from hard, on shell quarks:

r a

$$
\frac{\mathbf{r} \cdot \mathbf{a}}{\sqrt{m_{\infty}^2 + \mathbf{r}}} \sim \mathcal{O}\left(\frac{1}{m_{\infty}^2}, \frac{1}{\Gamma}\right) \sim g^{-2}
$$

4. DENSITY OF SOFT GLUONS

$$
G_{rr} = \left(\frac{1}{2} + \frac{\Pi}{\Pi_{>} - \Pi_{<}}\right) \left(G_{\text{ret}} - G_{\text{adv}}\right)
$$

◆ Leading order diagrams give

$$
Q \frac{\partial}{\partial r} = \Omega T \left[\frac{1}{q_{\perp}^2} - \frac{1}{q_{\perp}^2 + m_D^2} \right]
$$

5. DENSITY OF HARD QUARKS

WCGill

$$
S_{rr} = \left(\frac{1}{2} + \frac{\Sigma_{\text{<}}}{\Sigma_{\text{>}} - \Sigma_{\text{<}}}\right) \left[S_{\text{ret}} - S_{\text{adv}}\right].
$$

◆ For hard, on-shell quarks the resummed

6. EVALUATING THE CHANNELS

- ◆ To get Π γ $\mathcal{L}_{12}^{\gamma}$ we must sum sixteen quark four-point functions in the r/a basis.
- ◆ In equilibrium we can use the KMS condition to simplify the sum.
- \bullet Out of equilibrium our formula for S_{rr} makes the sum telescopic. Then

◆ One gets a Boltzmann-like integral equation that must be solved numerically.

7. CONCLUSION

- ◆ Remarkably, the inelastic channels are fully characterized by \boldsymbol{F} and three nonequilibrium constants:
	- **–** Ω Density of soft gluons
	- **–** m² D Debye mass
	- m_∞^2 Thermal mass of quarks
- ◆ Next steps:
	- **–** Solve the integral equation.

- **–** Extend to non-isotropic media (relevant for shear viscosity).
- **–** The tools developed can be used for non-equilibrium jet energy loss.

8. REFERENCES

- [1] C. Shen, J.-F. Paquet, U. Heinz, C. Gale, *Phys.Rev.*, vol. C91, p. 014908, 2015 [arXiv:1410.3404]
- [2] S. Hauksson, C. Shen, S. Jeon, C. Gale, *Hard Probes 2016* [arXiv:1612.05517]
- [3] P. Arnold, G. Moore, L. Yaffe, *JHEP*, vol. 11, p. 057, 2001 [hepph/0109064]
- [4] P. Aurenche, F. Gelis, H. Zaraket, *JHEP*, vol. 05, p. 043, 2002 [hep-ph/0204146]