Reinterpretation of higher harmonics from mini-jet propagation Michito Okai^{a, 1}, Yasuki Tachibana^{b, 2}, Tetsufumi Hirano^{a, 3} ^aDepartment of Physics, Sophia University,

^bInstitute of Particle Physics and Key Laboratory of Quark and Lepton Physics, Central China Normal University

Introduction 1.

Change of collective dynamics?

Purpose of study

Creation of the QGP fluid

- Hydrodynamic responses to propagation of mini-jets in the QGP
- Construction of a model describing dynamics from low to high $p_{\rm T}$
- Reinterpretation of higher harmonics with effects of mini-jets propagation

2. QGP fluid + jet model

Hydrodynamic evolution

```
\tau = 0^+ Partons generated by PYTHIA •••(1)
   \tau_{00} = 0.1 \, \text{fm}
            Deposition of energy and momentum
                                                             Creation of initial
            from generated partons
                                                             state for
             constant loss = 5 \text{ GeV/fm}
time
                                                             hydrodynamic fields
  	au_0 = 0.6 \text{ fm} Hydrodynamic initial state
                                                   •••(3)
                 with random flow velocity
            T > T_{\rm f} = 160 \,{\rm MeV}
                                                            Expansion of the QGP
              Energy loss (jet-like) •••(4)
    (2)
            T < T_{\rm f} = 160 \,{\rm MeV}
                                                            Deposition of energy
              No energy loss
                                                            and momentum
                                                            from mini-jets
  Freeze-out
```

- Deposition of energy and momentum
- Induced flow in QGP fluid

(2) Hydrodynamic equations with source terms

Deposition of energy and momentum from partons to the QGP fluid

$$\partial_{\mu}T^{\mu\nu} = \sum J_i^{\nu} , \qquad J^{\mu}(x) = -\frac{dp_{jet}^{\mu}}{dt}\delta^{(3)}\left(x - x_{jet}(t)\right)$$

 $T^{\mu\nu}$: Energy-momentum tensor of the QGP fluid J^{μ} : Source term from partons to the QGP fluid

 $\tau_{00} < \tau < \tau_0$: Creation of the QGP fluid

 $\tau_0 < \tau$: Energy-momentum deposition from mini-jets to the QGP fluid

Y. Tachibana and T. Hirano, Phys. Rev. C **90**, no. 2, 021902 (2014)

- Instantaneous local thermalization of energy and momentum deposited from partons
- Ideal hydrodynamic approximation
- Lattice EoS (S. Borsanyi *et al.*, Phys. Lett. B730, 155 (2014))

(3) Hydrodynamic initial state ($\tau_0 = 0.6 \text{ fm}$)

Energy density

Transverse flow velocity

Pb+Pb 1 event

b = 0 fm

 $\eta_{s} = 0$

Configuration space Transverse positions from MC-Glauber Space time rapidity =momentum rapidity from **PYTHIA**

3. Results

$p_{\rm T}$ distribution (centrality 40 -50 %)

- Enhancement of pion yields at $p_{\rm T} =$ 3-5 GeV due to mini-jets' energy loss and initial flow velocity fluctuations Power law behavior even with fluid
 - components due to initial flow velocity fluctuations

Centrality dependence of v_2 (default model)

$p_{\rm T}$ dependence of v_2 (centrality 40 -50 %)

$p_{\rm T}$ dependence of v_3 (centrality 40 -50 %)

$p_{\rm T} = 0.2 \, {\rm GeV}$

- A little enhancement due to initial flow fluctuations
- $p_{\rm T} = 3-5 {\rm ~GeV}$
 - No monotonic increase due to mini-jets' energy loss and initial flow velocity fluctuations

- Increase of v_2 with centrality percentage
- \rightarrow Consistent with hydrodynamic results with conventional initialization
- Non-zero v_2 even at "0 %" centrality (b = 0 fm)

- Large enhancement due to initial flow velocity fluctuations
- Small effect of mini-jets' energy loss on v_3
- \rightarrow Need correction to shear viscosity in dissipative hydrodynamic model?

4. Summary

- Description of hydrodynamic initialization and mini-jets' energy loss in QGP in a unified framework (i.e., hydrodynamics with source terms)
- Initial flow velocity fluctuations naturally generated ullet
- Calculation of higher harmonics v_n •
- Large effects of initial flow velocity fluctuations on v_n

Effects of mini-jets energy loss visible in vanishing initial flow velocity fluctuations

¹michito0605@eagle.sophia.ac.jp, ²yasuki.tachibana@mail.ccnu.edu.cn, ³hirano@sophia.ac.jp