Dynamical evolution of critical fluctuation and its observation

Miki Sakaida, Masayuki Asakawa, Hirotsugu Fujii^A, Masakiyo Kitazawa(Osaka Univ., Univ. Tokyo^A)

Sakaida et al., to appear soon

1. Purpose of this study

For exploring QCD critical point, event-by-event fluctuations of conserved charges are believed to be promising observables in HIC.

Purpose of this study

To investigate time evolution of fluctuations of net-baryon number near QCD critical point.

■To propose a new signature among fluctuation observables.

2. Fluctuations in BES

Collision energy dependence of net proton cumulants@STAR(2015)

Large fluctuations of conserved charges are expected near the QCD critical point

■Non-monotonicity in √^{SNN} dep. of the kurtosis is a signal of QCD critical point??

More understanding for fluctuation observables is needed!!

 $^{\circ}$ Thermal fluctuation@QCD critical point Asakawa, Ejiri, Kitazawa(2009); Stephanov(2009) $\langle Q^2 \rangle_c \sim \xi^2$ and $\langle Q^3 \rangle_c \sim \xi^{4.5}, \langle Q^4 \rangle_c \sim \xi^7$ + sign change with correlation length : $\xi \to \infty$

3. Rapidity window $\Delta \eta$ dependence

Variance of net-electric charge@ALICE(2013)

5. Our model

Non-monotonic behaviors as functions of the rapidity interval are robust experimental signals for the QCD critical point!