Susceptibilities from a Black Hole Engineered EoS with a Critical Point

Israel Portillo

UNIVERSITY of Houston

Collaborators:

University of Houston: Claudia Ratti, Jacquelyn Noronha-Hostler, Paolo Parotto

University of Sao Paulo: Jorge Noronha, Romulo Rougemont, Stefano Finazzo, Renato Critelli
Exploring The QCD Phase Diagram

Study possible signatures of the location of the QCD critical point (CP) using a black hole engineered holographic model.

Lattice QCD:
Perform calculations at $\mu_B = 0$, extrapolate via Taylor expansion to finite μ_B.

Holographic Black Hole Engineering:
Based on lattice data at $\mu_B = 0$, allows us to calculate observables at finite density.

Susceptibilities of Conserved Charges:
Provide information about the effective degrees of freedom. Sensitive to the CP.
Holographic Black Hole Engineering

Non-conformal holographic gravity dual in 5 dimensions

\[S = \frac{1}{16\pi G_5} \int d^5 \sqrt{-g} [\mathcal{R} - \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi) - \frac{1}{4} f(\phi) F_{MN}^2] \]

\[\text{nonconformal} \quad \mu_B \neq 0 \]

\[\Rightarrow \text{Black Hole Solution} \]

Input parameters are fixed by lattice QCD results at \(\mu_B = 0 \)

Finite \(T \) and \(\mu_B \rightarrow \) Predictions

Results for Baryon Susceptibilities

\[\chi_i = \frac{\partial_i}{\partial (\mu_B/T)^i} \left(\frac{P}{T^4} \right) \]

- The model predicts the right behavior for \(\chi_4 \) and \(\chi_6 \)
- The model has a CP at \(T = 89 \text{ MeV} \) and \(\mu_B = 723 \text{ MeV} \)
Connection to Experiment

- Freeze-out parameters are extracted by fitting the experimental values for χ_1/χ_2 and χ_3/χ_2

\[\chi_1/\chi_2 \rightarrow M/\sigma^2 \quad \chi_3/\chi_2 \rightarrow S\sigma \]
Freeze-out parameters are extracted by fitting the experimental values for $\frac{\chi_1}{\chi_2}$ and $\frac{\chi_3}{\chi_2}$

$$\frac{\chi_1}{\chi_2} \rightarrow \frac{M}{\sigma^2}$$

$$\frac{\chi_3}{\chi_2} \rightarrow S\sigma$$

Freeze-out points far from CP

$\frac{\chi_4}{\chi_2}$ predicted at freeze-out points

Non-monotonic region near crossover line