

Classifier output calibration

YSDA, NRU HSE

Tatiana Likhomanenko

Classifier output calibration

Introduction

ROC curve: output ranking

Applications

In the following areas we need to obtain probabilities for samples:

- > science (e.g., determining which experiments to perform)
- medicine (e.g., deciding which therapy to give a patient)
- business (e.g., making investment decisions)
- weather forecasting
- ame theory
- ad click prediction
- > HEP

HEP applications

- Probability estimation for some physics processes requires true probabilities
- Combine information from different parts of the event within probabilistic model
- Probabilities are easier to manipulate

Probabilistic classifier is

- > predicts not only outputting the most likely class that the sample should belong to;
- \rangle is able to predict a probability distribution over a set of classes $P(\mathbf{y}|x)$;
- provides classification with a degree of certainty, which can be useful in its own right, or when combining classifiers into ensembles.

Introduction

Which model is a probabilistic classifier?

- Naive Bayes, Logistic Regression and Multilayer Perceptrons (when trained under an appropriate loss function) are naturally probabilistic.
- Other models such as Support Vector Machines are not.
- Decision Trees and Boosting methods produce distorted class probability distributions [1].
- There are methods to turn them into probabilistic classifiers.

The transformation of the score returned by a classifier into a posterior class probability is called calibration

Examples

Sources and Description

Examples

Introduction 10

Classifier output calibration

Scoring rules

In decision theory, a score function, or scoring rule, measures the accuracy of probability predictions

Proper scoring rule

- Winkler and Murphy, 1968
- A scoring function will give a reward of $S(\mathbf{p}, \omega)$ if the ω th class occurs.
- A scoring rule, for which the highest expected reward is obtained by reporting the true probability distribution, is called proper.
- A scoring rule is strictly proper if it is uniquely optimized by the true probabilities.
- > Strictly proper scoring rules remain strictly proper under linear transformation.
- The scoring rule *S* is local if $S(\mathbf{p}, \omega) = s(p_{\omega})$ for some function *s*.

Scoring rules

Strictly proper scoring rules

The logarithmic scoring rule is a local strictly proper score (negative of surprisal):

$$L(\mathbf{p}, \omega) = \log_b(p_\omega), \quad b > 0$$

The quadratic scoring rule:

$$Q(\mathbf{p}, \omega) = 2 p_{\omega} - ||\mathbf{p}||^2$$

The Brier score (should be minimized) obtained from quadratic by affine transform:

$$B(\mathbf{p}, \omega) = \|\mathbf{p} - \mathbf{I}_{\omega}\|^2$$

The spherical scoring rule:

$$S(\mathbf{p}, \omega) = p_{\omega} / ||\mathbf{p}||^2$$

Strictly proper scoring rules

logarithmic

spherical

-Brier

Scoring rules

Classifier output calibration

Methods to calibrate classifier

- parametric
 - Platt scaling [2]
- > non-parametric
 - quantile binning [3]
 - isotonic regression [4]

Quantile binning: calibration mapping

Quantile binning limitations

- bins map output into only N possibilities;
- fixed bin boundaries;
- which number of bins should be used?

Isotonic regression

- isotonic (monotonic) mapping
-) generalizes a histogram binning model
- position of the bins boundaries are fitted
- optimizes the Brier score with isotonic restriction
- > sometimes monotonicity assumption can be failed (ROC curve is not convex)

Isotonic regression

Sklearn implementation

Platt scaling (logistic regression)

- > sigmoid transformation
- learn affine transformation followed by sigmoid
- minimize logistic loss
-) effective for SVMs
- not change the ranking (ROC curve stays the same)
- > sigmoid function rarely fits the true distribution

$$p_{true} = \frac{1}{1 + e^{-(Ap+B)}}$$

Platt scaling: calibration mapping

Examples: calibrated models

Recommendations

- Make sure you need probabilities :)
- Use Platt scaling and isotonic regression for calibration
- Use holdout to check your calibration rule
- Use logarithmic and Brier scorings to select optimal calibration rule (and model)

References

- Scoring Rules and Decision Analysis Education
- Some Comparisons among Quadratic, Spherical, and Logarithmic Scoring Rules
- Strictly Proper Scoring Rules, Prediction, and Estimation
- Obtaining Calibrated Probabilities from Boosting
- Blogpost about classifier's output calibration to probability
- Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models
- Venn-Abers predictors

Thanks for attention

Contacts

Likhomanenko Tatiana researcher-developer

antares@yandex-team.ru, tatiana.likhomanenko@cern.ch