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e Scalable learning algorithm
* Experiments



What is machine learning?

ML tries to find regularities within the data

Data is a set of objects (users, images, signals, RNAs, chemical compounds,

credit histories, etc.)

Each object is described by a set of observed variables X and a set of

hidden (latent) variables T’

It is assumed that the values of hidden variables are hard to get and we
have only limited number of objects with known hidden variables, so-called

training set

The goal is to find the way of predicting the hidden variables for a new

object given the values of observed
variables by adjusting the weights W of
decision rule.
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Machine learning

With the spread of information technologies ML has been used in more and
more domains

e Computer vision

e Speech recognition

e Credit scoring

e Mineral depostis search

e Bioinformatics

e Web-search

e Recommender services
e Behaviour analysis

e Social studies

e ctc.




Entering the Age of Big Data

The amount of data available for analysis grows several
orders faster than the computational resources

Diflicult even to keep it not saying about processing
Old methods simply do not work

New mathematics is needed Data

Computational
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First Steps towards Mathematics of Big Data

Bayesian Inference & Graphical Models (Koller09)
Latent Variable Modeling (Bishop06)
Deep Learning (Bengiol4)

Tensor Calculus & Decomposition Techniques (No good book published
yet)

Stochastic Optimization (No good book published yet)




Bayesian framework

Encodes ignorance in terms of distributions
Makes use of Bayes Theorem
Likelihood X Pri X\0)p(0
Posterior = ——— .OO a I‘lOI" p(0|X) = P(X[6)p(6)
Evidence [ p(X10)p(6)do

Posteriors may serve as new priors, i.e. may combine multiple models!

BigData: we can process data streams on
an update-and-forget basis

Support distributed processing

" It’sa
\_ Fan! (




Incomplete data

e It is often the case when for training objects we know only the subset of
their possible values of hidden variables

e This is an example of so-called weakly-labeled data
e Need to build ML models with latent variables

e With huge datasets learning from incomplete data is almost as effective

Topics Documents Topic proportions and
assignments
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Deep learning

e New generation of neural networks (Deep Boltzmann machines, convolu-
tional nets, auto-encoders) have achieved state-of-art performance almost
in all ML problems where there was enough training data (X, T}, ).

e For the first time computer shows the signs of understanding the sense

of data

e Very large datasets are needed (Big data effect)

Convolution
A

Fully connected




Secret of Success of Neural Nets

e Pretraining algorithms allow to find good starting point for back-propagation
e Processing huge datasets makes training procedure robust
e Less subjected to overfitting when dealing with huge datasets

e Efficient GPU implementations allow to construct very deep networks
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Stochastic Optimization

e Allows to optimize function FASTER than the time needed to compute it
at a single point!

e Deals with functions of billions of objects

e Instead of working with function we use its unbiased estimate which can
be millions times faster to compute
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deterministic
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Stochastic optimization

e Extremely efficient technique for large-scale optimization of f(x)
e Uses unbiased estimates g(x) instead of true gradients V f(x)

e (Robbins, Monro, 1951) If f(x) is differentiable, Eg(x) = V f(z), Vx, and
S ap =400, ¥, o < +00, ag > 0 then

Try1 = Tp + arg(Tr)
converges to stationary point of f(x)

e Convergence is sublinear (very slow!) and slows down with the increase of

Dg(x)



Advanced techniques

e Modern stochastic optimization methods (SAG, Adam, SFO, SVRG, etc.)
use either momentum, memory, or unbiased estimates of Hessian to speed
up the convergence

e Variance reduction techniques (controled variates, reparametrization, etc.)
are also crucial

e Linear and in some cases even superlinear convergence




Stochastic gradients

Function Stochastic gradient
f(z) =20 filz) Vfi(x)
f(z) =Eyh(z,y) = [p(y) )dy 2h(z,y0), Yo~ p(y)

f(x) = Eyoh(z,y) = [ plylz)h(z, y)dy

S=h(x,90) + h(z,90) 2% log p(yolz),

Yo ~ p(y|x)

Last example has extremely large variance!
Variance reduction is needed




Tensor perspective

Tensor is a multi-dimensional array
The amount of elements in tensor grows up exponentially

Tensor decompositions provide special format for keeping its elements in
a compact form

We may perform operations on tensors directly in this form

Tensor train is one of the most promising formats:

A[/L‘]_g ... 3Zn] ~ Gl [Z]_] . e Gn[’[,n]’ Where G’C [@k] e R'rk_l XTE



Putting things together

e NeuroBayes (2014-2015) Uses deep networks with stochastic optimization
for performing Bayesian inference in very complex probabilistic models

e TensorNet (2015) Combines stochastic optimization with tensor decomposition
and deep learning
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Word2vec model (Mikolov2013)

* Designed for word prediction according to its context

* Transforms words to points in 255-dimensional vector space

INPUT PROJECTION OUTPUT

Skip-gram



Mathematical formulation

. w(t-C) ... w(t) .. w(t+C) .. |:> w(t) w(t-C)

w(t) w(t-C+1)
w(t)

w(t) w(t+C-1)
w(t) w(t+C)

B exp (In TOut )
p(y‘ﬂ?) o Zy’ exp (IT?,( )TOUt(y,))

w(t+1) w(t+1-C)

p(Y|X) — max
{In,Out}

This is how it should work in ideal case. The problem is with
denominator which ensures normalization. It requires O(V) to compute
it for each X



Hierarchical soft-max

e Let us construct binary Huffman tree for our dictionary
e FEach word y to be predicted corresponds to a leaf in the tree
e Denote Path(y) the sequence of internal nodes from root to leaf y

e Denote d. , the direction of further path from c to y:

i +1 gy is in right subtree
Y —1 y is in left subtree

e Then
pyle) =[] o (deyIn(z)"Out(c)),
ceEPath(y)
where o(x) = —1—|—exi'l)(—:c)

e Reduce complexity from O(V) to O(log V')




Semantic properties of representations

e Most known property of word2vec model: algebraic operations on vectors
correspond to semantic operations on senses:

In(’Paris’) — In(’France’) + In(’Russia’) = In(’Moscow’)
Thousands of examples!

e Word2vec seems to capture notions of gender, geogaphy, number, and
many other attributes

e Can it be useful for Q&A models? WOMAN

MAN/ /’

UNCLE

AUNT

QUEEN

KING



Word ambiguity

e Suppose we want to answer the question
When was the Battle of Waterloo?

e Well... It depends on whether the following holds true:

In(’Waterloo’) — In(’Battle’) + In(’Date’) =~ In(’1815°)

e Even if we succeed we will not be able to answer any questions about the
song or the railway station

In(’Waterloo?’) =7

/ \ In(>ABEA)

In( ’Euston’) In( ,%Woﬁlf.eaz,—)vous ’)

In(’ Lond%() Station’)

In(’Napoleon’)
In(’Austerlitz’)
In(’Battle’)



Multi-sense extension of skip-gram

For simplicity assume we know the number of meanings for each word

Define the latent variable z; that indicates meaning of particular word
occurence T;

Let us search for vector representations of meanings rather than words
In(x;, z;)

Now it is easy to define the probability of y; given the context word and
its meaning:

p(yilxi, zi) = H o (dey; In(z;, zi)TOut(c)) :
cePath(y;)

1

where O'(CC) = H@(—M



Multi-sense extension of skip-gram

We have defined p(y;|z;, z;). To finish model we need to set p(z;|z;) that
is prior probability of particular meaning for a given word

In case of absense of any knowledge we may just set it to uniform distribution

p(z = k|z;) = @)’

where K(z;) is total number of meanings for word x;

Now we have complete discriminative model
p(Yi, zilz:) = p(yilzs, z:)p(2i|:)

If we knew z; this would be just standard skip-gram model with additional
context words

Since we do not know it we can now use EM-algorithm that will both
estimate our parameters { In(x, z), Out(c)} and the probabilities of meanings
of x; given its neighbour: p(z;|z;,y;)



Naive EM algorithm

e E-step: For each training object estimate the distribution on latent variable

p(yz‘\fﬂm k)p(zz = k|33z)
S (@) (yslas, Dp(zi = 1|z;)

We can do this in explicit manner assuming the number of meanings is
reasonably small

p(Zi = k|$i>yi) =

Our train arrived to Waterloo at Z2pm

 Station 0.76
Waterloo - 7? 4 Battle 0.21
_Song 0.03




Naive EM algorithm

E-step: For each training object estimate the distribution on latent variable

P(yz‘|ﬂ3z’, k?)p(zz = k|331,)
S (@) (yslas, Dp(zi = Uz;)

We can do this in explicit manner assuming the number of meanings is
reasonably small

p(zi = k|$iayi) =

M-step: Optimize w.r.t. {In(x, z), Out(c)}

Elog p(Y|Z. X)p(Z|X) —
ogp(Y|Z, X)p(Z|X) (hax

Equivalent to training standard skip-gram with increased number of context
words

Seems computationally efficient?..



Naive EM algorithm

E-step: For each training object estimate the distribution on latent variable

p(yz‘|5€z‘; k)p(zz = k|ﬂ3z)
S ()p(yslas, Dp(zi = 1)

We can do this in explicit manner assuming the number of meanings is
reasonably small

p(zi = k|$z‘,yz‘) =

M-step: Optimize w.r.t. {In(x, z), Out(c)}

Elog p(Y|Z. X)p(Z|X) —
ogp(YZ, X)p(Z|X) (hax

Equivalent to training standard skip-gram with increased number of context
words

Seems computationally efficient?.. NO!

We'll need to recompute p(z|x, y) for each object (In Wikipedia2012 there
is about 10? of words) to make just single iteration of EM



Naive EM algorithm

E-step: For each training object estimate the distribution on latent variable

P(?Jz‘|5€z’; k)p(zz = k|33z)
S ()p(yslas, Dp(zi = Uz;)

We can do this in explicit manner assuming the number of meanings is

p(zi = k|$z‘,yz‘) =

reasonably small
M-step: Optimize w.r.t. {In(x, z), Out(c)}

Elog p(Y|Z. X)p(Z|X) —
ogp(YZ, X)p(Z|X) (hax

Equivalent to training standard skip-gram with increased number of context
words

What if on M-step we try to make a single step towards stochastic gradient
of Elogp(Y|Z, X)p(Z|X)?



Large-scale EM

e Consider the gradient of Elog p(Y|Z, X)p(Z|X) in detail

VEzlogp(Y|Z, X)p(Z|X) = VEz Y _ (log p(ys|zi, z:) + log p(zila:)) =
1=1

ZE (Vlog p(yi|zi, ;) +[V10gp ZJ%}) ZEz@ngp(?sz,sz))

1=1 =1
Does not depend on {In Out}

e Its unbiased estimate is simply

K (z;) We know from E-step
E.,Vlogp(yi|zi, i) = Z[p 2 = klyz,xzwlogp vilk, z;)

e But to compute it we only need to know p(z;|y;,x;) for single training
instance!



Sketch of the final algorithm

e Build Huffman tree for the dictionary
e Fix initial approximation for each 6 = {In(z, z), Out(c)}
e Do one pass through training data

— Compute the probabilities of meanings for z;

p(yz‘ |5Ez', Zi)p(?«’i |$z)
o) p(yilas, k)p(zi = k|z:)

P(Zz’%ayz) —

— Make one step towards stochastic gradient:

K(z;)

Onew = Oo1a + o Y Pz = klzi,y:)Volog p(ys|ai, k)
k=1



What was not covered in this talk

Each word occurence is present 2C' times in training set and of course the
corresponding x; should have the same meaning

We may use so-called non-parametric Bayesian inference to automatically
define the number of meanings for each word

To do this we need to set a special prior on p(z;|z;) using so-called Chinese
restaurant process

To obtain tractable approximations for p(z;|z;, y;) we’ll need to use Stochastic
variational inference (Hoffman, 2013) which is similar to large-scale EM
described above




Experiments: Multiple meanings

Closest words to " platform” Closest words to "sound”

fwd
sedan
fastback
chrysler
hatchback
notchback
rivieraoldsmobile
liftback
superoldsmobile
sheetmetal

stabling
turnback
pebblemix
citybound
metcard
underpass
sidings
tram
cityrail
trams

software
10S
freeware
netfront
linux
microsoft
browser
desktop
interface
newlib

puget
sounds
island
shoals
inlet
bay
hydrophone
quoddy
shore
buoyage

sequencer
multitrack
synths
audiophile
stereo
sampler
sequencers
headphones
reverb
multitracks

Computer is now able to assign different semantic representations to different

occurrences of same word depending on the context



Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation
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Probabilities of meanings
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0.00016605



Experiments: word disambiguation

e We run AdaGram with o« = 0.2

e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Who won the Battle of Waterloo?

Probabilities of meanings
0.0000098

0.997716

0.0000309

0.00207717

0.00016605

Closest words:
"sheriffmuir"
"agincourt"
"austerlitz"
"jena-auerstedt”
"malplaquet”
"koniggratz"
"mollwitz"
"albuera"
"toba-fushimi"
"hastenbeck"
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Experiments: word disambiguation

e We run AdaGram with o = 0.2
e 5 meanings for "Waterloo’ were found

e Let us try to make disambiguation

Our train has departed from Waterloo at 1100pm
Closest words:

Probabilities of meanings ::padd'”§t°n"
0.948032 ”e-UStOh )
0.00427984 "\{|Ct0r|a )
0.000470485 "“verpool "
0.0422029 "n’-lo'f)rgate
0.0050148 Via
"london"
"street”
"central"

"bridge"



Downloads

e Code and documentation available

https://github.com/sbos/AdaGram.jl

* Trained models available
https://yadi.sk/d/WA4FtSjA503jUL

* Paper available

S. Bartunov, D. Kondrashkin, A. Osokin, D. Vetrov. Breaking Sticks and
Ambiguities with Adaptive Skip-gram. In AISTATS 2016

http://arxiv.org/abs/1502.07257



https://github.com/sbos/AdaGram.jl
https://yadi.sk/d/W4FtSjA5o3jUL
http://arxiv.org/abs/1502.07257

Conclusion

Latent variable modelling allows to uncover deeper dependencies in the
data that are not obvious even in the training data

Using LVM we may use weakly-annotated data and learn from multiple
sources

Stochastic optimization allows us to train LVM almost as fast as standard
models

Stochastic
optimization

Deep learning

Latent
variable
modelling



