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Abstract 

When modeling a classifier on simulated data, it is possible to reach a high 

performance by picking features that are not perfectly modeled in the 

simulation. To avoid this problem in Kaggle’s "Flavours of Physics: Finding 𝜏-→𝜇
-𝜇-𝜇+ " competition a proxy channel with similar topology and well-studied 

characteristics was introduced. 

 

This proxy channel was intended for validation of classifier trained on another 

channel of interest. We show that such validation scheme is questionable from 

a point of view of statistical inference as it violates fundamental assumption in 

Machine Learning that training and test data follow the same probability 

distribution.  
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Proposed solution: 

Transfer Learning 

We relate the problem to known paradigm in Machine Learning – Transfer 

Learning between different underlying distributions. 

 

We propose a solution that brings the problem to transductive transfer learning 

(TTL) and simple covariate shift, a primary assumption in domain adaptation 

framework. 

 

Finally, we present transfer learning model (one of a few) that finished the 

competition on the 5 place. 
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1. INTRODUCTION 
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Description 

Like 2014’ Higgs Boson Kaggle Challenge, this competition dealt with the 

physics at the Large Hadron Collider.  

 

However, the Higgs Boson was already known to exist. The goal of 2015’ 

challenge was to design a classifier capable to discriminate a phenomenon that 

is not already known to exist – charged lepton flavour violation – thereby 

helping to establish "new physics" (from the competition description) 

1. Introduction 
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https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/flavours-of-physics


The data 

For training the classifier participants were given ~800,000 signal and 

background samples of labeled data from 𝜏-→𝜇-𝜇-𝜇+ channel.  

Background events come from real data, whereas signal events come from 

Monte-Carlo simulation. Hereinafter: 

 

• 𝜏-→𝜇-𝜇-𝜇+ channel shall be referred to as 𝜏 channel 

• its background data samples – as 𝑋𝑑𝑎𝑡𝑎
𝜏  

• its Monte-Carlo simulated signal data samples – as 𝑋𝑀𝐶
𝜏  

• The signal being “1” for events where the decay did occur, “0” for 

background events where it did not. 
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Control channel 

Since the classifier was trained on simulated data for the signal and on real 

data for the background, it was possible to reach a high performance by 

picking features that are not perfectly modeled in the simulation. 

 

To address this problem a Control channel with known characteristics was 

introduced, and classifier was required not to have large discrepancy when 

applied to 𝜏 and control channel.  Kolmogorov–Smirnov test (Agreement test) 

was used to make sure that classifier performance does not vary significantly 

between the channels. 

1. Introduction 
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https://www.kaggle.com/c/flavours-of-physics/details/agreement-test


Control channel (continued) 

Control channel Ds
+→(→𝜇-𝜇+)+ has a similar topology as the 𝜏 channel, and is a 

much more well-known, well-observed behavior, as it happens more frequently. 

 

Just like for 𝜏 channel participants were provided with both Monte-Carlo 

simulated and real data for Ds
+→(→𝜇-𝜇+)+ decay to which the classifier can be 

verified. In addition, sPlot weights were assigned to real data. Higher weight 

means an event is likely to be signal, lower weight means it’s likely to be 

background.  Real data is a mix of real decay and background events with large 

prevalence of background. Hereinafter: 

 

• Ds
+→(→𝜇-𝜇+)+ channel shall be referred to as 𝐷𝑠 −channel 

• its real data samples (mainly background) – as 𝑋𝑑𝑎𝑡𝑎
𝐷𝑠  

• its Monte-Carlo simulated signal samples – as 𝑋𝑀𝐶
𝐷𝑠  

 
1. Introduction 
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Evaluation 

The test dataset consists of mix of 

samples from 𝜏 and 𝐷𝑠 channels (real 

data and Monte Carlo simulated). 

 

The evaluation metric for this 

competition is Weighted Area Under 

the ROC Curve (AUC). 

 

Only 𝜏 samples are used for evaluation 

of AUC. 𝐷𝑠 samples are ignored for 

ROC scoring and used in Agreement 

test. 
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From documentation of the challenge 



No training on 𝑫𝒔 channel 

allowed 

𝐷𝑠 channel was not intended for training, its purpose was validation of 

already trained classifier in KS-test. 

1. Introduction 
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This requirement became the main challenge of 
“Flavours of Physics: Finding 𝜏-→𝜇-𝜇-𝜇+“, and 
constitutes central point of this presentation. 



The problem: validation on 𝑫𝒔 

channel is questionable 

In the following we demonstrate that 𝜏 and 𝐷𝑠 channels have 

significantly different probability distributions. 

 

On the other hand, Machine Learning theory shall remind us why testing 

on data that has different probability distribution than data where the 

model was created violates … 

1. Introduction 
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This assumption is the cornerstone of statistical learning and, in 

general, of inference. 

… the assumption of a single underlying generative 
process between the train set and the test set.  



Our plan 

o The following section is dedicated to foundations of Machine Learning 

theory. We demonstrate there that 𝜏 and 𝐷𝑠 channels have different 

underlying probability distributions and argue why it is bad. 

o In “Transfer learning” section we propose a framework for learning from 

different distributions. 

o “Implementation” section discusses solution presented for this competition 

and sets some guidelines for further development. 

o “Kolmogorov–Smirnov test” section is optional but provides some 

interesting insight. 

 

   

1. Introduction 
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2. BRIEF REVIEW OF MACHINE 

LEARNING FOUNDATIONS 

Let us briefly recall the fundamentals of Machine Learning theory. 
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Empirical risk minimization 

Standard Machine Learning approach is to try to minimize the training error. 

This algorithm picks hypothesis such that: 

 

ℎ =  arg min
ℎ ∈ 𝐻

𝜀 (ℎ) 

 
This process is called empirical risk minimization (ERM). Let us recall how it 

works and WHY it works 

2. Brief review of Machine Learning foundations 14 



Building blocks of the general (supervised) 

statistical learning process 
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(𝑋𝑖 , 𝑦𝑖) – set of independent 
and identically distributed (iid) 
training examples drawn from 

unknown input distribution 
𝑃(𝑋) 

H (ℎ1 …ℎ𝑘) – hypothesis set, or 
the set of all classifiers 
considered by learning 

algorithm. This can be, for 
example, a set of all linear 

classifiers in 𝑅𝑛
 

𝑓(𝑥) – unknown target 
function 

ℎ (𝑥)– hypothesis that learning 
algorithm picks to approximate 

𝑓(𝑥) 

𝜀(ℎ, 𝑓) error measure that 
quantifies how well each 

hypothesis ℎ(𝑥) ∈ H  
approximates the target 

function 𝑓 

A – the learning algorithm that 
uses the training set to pick a 

hypothesis ℎ:  𝑋 → 𝑌 that 
approximates 𝑓. 



The learning diagram 

Unknown input 
distribution 

𝑃(𝑋) 

Learning  
Algorithm 

A 

Unknown target 
distribution 𝑃(𝑦|𝑋) 

target function f: 
X→Y    plus noise 

Final 
Hypothesis 

ℎ : X→Y 

Training examples 

(𝑥1,
𝑦1)… (𝑥𝑛,

𝑦𝑛) 

Hypothesis Set 

H (ℎ1 …ℎ𝑘 ) 

𝑥 

𝑥1, … , 𝑥𝑛 

Error measure 𝜀() 

ℎ𝑖(𝑥) ≈  𝑓(𝑥) 

Based on Y. S. Abu-Mostafa, H.-T. Lin, M. Magdon-Ismail, “Learning From Data”, p.30 



Generalization 

Generalization is ability to perform well on unseen data, is what 

Machine Learning is ultimately about. 

 

Why should doing well on the training set tell us anything about 

generalization error? Can we prove that learning algorithms will work 

well? 
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Most learning algorithms fit their models to the training set, but what we really 

care about is generalization error, or expected error on unseen examples.        



Hoeffding’s inequality 

2. Brief review of Machine Learning foundations 18 

It is possible to prove this most important result in learning theory using just two 

lemmas [2], [3] (*) : 

 the union bound 

 Hoeffding’s inequality (Chernoff bound) which provides an upper bound on 

the probability that the sum of independent and identically distributed (iid) 

random variables deviates from its expected value. 

𝑃(|𝜀 ℎ𝑖 − 𝜀 ℎ𝑖 | > 𝛾) ≤ 2𝑘𝑒−2𝛾2𝑚 
This means that for all ℎ𝑖 ∈ 𝐻 (**) generalization error 𝜀 will be close to training 

error 𝜀  with “high” probability, assuming 𝑚 - the number of training examples - 

is “large”. 

 
(*) Y. S. Abu-Mostafa, H.-T. Lin, M. Magdon-Ismail, “Learning From Data”. AMLBook (March 27, 2012), ISBN-10: 

1600490069  

Andrew Ng, “Part VI Learning Theory”. Stanford University CS229 Lecture 

(**) for simplicity we assume 𝐻 is discrete hypothesis set consisting of 𝑘 hypotheses, but in learning theory this result 

extrapolates to infinite 𝐻 [2], [3] 

 

 



iid assumption 

2. Brief review of Machine Learning foundations 19 

Note that Hoeffding’s inequality does not make any prior assumption about the 

data distribution. Its only assumption is that the training and testing data are 

independent and identically distributed (iid) random variables drawn from the 
same distribution D 

 

The assumption of training and testing on the same 
distribution is the most important in a set of 

assumptions under which numerous results on 
learning theory were proved. 



Comparison of 𝝉 and 𝑫𝒔 channel 

distributions 

2. Brief review of Machine Learning foundations 20 

Let us return to our problem and look at (some of) input distributions of 

𝜏 and 𝐷𝑠 channel 
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The distributions are different… 

2. Brief review of Machine Learning foundations 22 

It is evident that the underlying probability distributions significantly differ 

between the two channels, therefore violating the assumption of a single 

underlying generative process between the train set and the test set, which is 

the cornerstone of statistical learning and, in general, of inference. 

 

 



…but why should we care? 

2. Brief review of Machine Learning foundations 23 

Indeed, we train classifier on 𝜏 channel, but we do not test it (as classifier) on 

𝐷𝑠 channel. Or we do? 

 

Essentially, when we perform KS-test and require its value to be small we make 

sure that classifier scores follow certain probability distribution on 𝐷𝑠 channel. 

Such distribution is derivative of classifier score function just like, for example, 

area under ROC curve is. 

 

Hence, does KS-value inherit Hoeffding’s guarantee obtained for score function 

during training? 

 

 it would… if the distributions were the same 



What does it mean for us? 

2. Brief review of Machine Learning foundations 24 

Practically this means that Kolmogorov–Smirnov test provides no guarantee [in 

statistical sense] for KS value on 𝐷𝑠 channel where a model was not trained. At 

the best, low KS value can be achieved by chance, and there is no guarantee it 

remains small with some other 𝐷𝑠 data. 

To draw conclusions from different distribution that did 
not participate in inference is generally useless - as long 

as we hold on Machine Learning paradigm. 



3. KOLMOGOROV–SMIRNOV 

TEST 

Before we propose a solution to the problem of different 

distributions let us review nuances of Kolmogorov–Smirnov test 

that played interesting role in this competition. 
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Kolmogorov–Smirnov test 

3. Kolmogorov–Smirnov test 26 

One of the competition requirements for the classifier is small discrepancy 

when applied to data and to simulation. Kolmogorov–Smirnov test [9, 

Agreement test] evaluates distance between the empirical distributions of the 

classifier scores on 𝐷𝑠 channel: 

 

𝐾𝑆 =  sup |𝐹𝑀𝐶 − 𝐹𝑑𝑎𝑡𝑎
∗ | 

 

where 𝐹𝑀𝐶 and 𝐹𝑑𝑎𝑡𝑎 are cumulative distribution functions (CDF) of the 

classifier scores 𝑠(𝑋) for 𝑋𝑑𝑎𝑡𝑎
𝐷𝑠  (real, mainly background) and 𝑋𝑀𝐶

𝐷𝑠  (simulated, 

signal). Asterisk in 𝐹𝑑𝑎𝑡𝑎
∗  stands for sPlot adjusted distribution 𝐹𝑑𝑎𝑡𝑎 (see next 

slide) 

 

https://www.kaggle.com/c/flavours-of-physics/details/agreement-test
https://www.kaggle.com/c/flavours-of-physics/details/agreement-test


Score distribution agreement on 

𝑫𝒔 channel 

3. Kolmogorov–Smirnov test 27 

Score densities of real and simulated data on 𝐷𝑠 channel are naturally different 

– see PDFs below. In order to compare them in KS-test, distribution of 𝑠(𝑋𝑑𝑎𝑡𝑎
𝐷𝑠 ) 

is scaled with pre-computed weighs obtained from sPlot method [Agreement 

test, 10] 

https://www.kaggle.com/c/flavours-of-physics/details/agreement-test
https://www.kaggle.com/c/flavours-of-physics/details/agreement-test


𝑲𝑺 statistic 

3. Kolmogorov–Smirnov test 28 

KS statistic 



A degenerate case 

3. Kolmogorov–Smirnov test 30 

There is an amusing degenerate case. If we assign a classifier random score uniformly distributed on 

[0, 1] and independent of underlying data 𝑋: 

𝑃(𝑌|𝑋)  =  𝑃(𝑌) ~ 𝑢𝑛𝑖𝑓(0,1) 

then CDF 𝑭𝒅𝒂𝒕𝒂  of such classifier retains its linear shape regardless of scaling: 



A degenerate case (continued) 

3. Kolmogorov–Smirnov test 31 

Not affected by sample weighting, such “classifier” can easily pass KS-test on 𝐷𝑠 channel. To 

demonstrate this, author of this presentation has implemented a simple model, combination of “strong” 

classifier and random noise. This model works as follows: 

1. “Real” or “strong” classifier assigns scores to all test samples. 

2. Samples with scores below certain (rather high) threshold 𝑇 < 1 change their score to random 

noise ~ 𝑢𝑛𝑖𝑓(0, 𝑇) 

3. Due to imperfect MC-simulation on 𝝉 channen and different 𝝉 and 𝑫𝒔 distributions most 

𝑋𝑀𝐶
𝜏  samples get high scores > 𝑇, while most 𝑋𝑑𝑎𝑡𝑎

𝜏 , 𝑋𝑀𝐶
𝐷𝑠 ,  𝑋𝑑𝑎𝑡𝑎

𝐷𝑠  get random scores < 𝑇 This 

randomness is enough for 𝑋𝑀𝐶
𝐷𝑠 , 𝑋𝑑𝑎𝑡𝑎

𝐷𝑠  samples to satisfy KS test on 𝑫𝒔 channel. 

To summarize, different samples get scores from different classifiers. 𝑫𝒔 channel is de facto controlled 

by “random” classifier, 𝝉 channel – by “strong” classifier. Although 𝑋𝑀𝐶
𝐷𝑠 , 𝑋𝑑𝑎𝑡𝑎

𝐷𝑠  pass KS test on 𝑫𝒔 

channel, this test has nothing to do with 𝝉 channel and can not assure quality of 𝑋𝑀𝐶
𝜏 . Please see this 

discussion for details. 

 

Of course, this is very artificial example, but it shows practical evidence against 

testing on different distribution. 

https://www.kaggle.com/rakhlin/flavours-of-physics/abcde
https://www.kaggle.com/josefslavicek/flavours-of-physics/simplified-version-of-my-solution


4. SOLUTION: TRANSFER 

LEARNING 

32 



Preamble 

4. Solution: transfer learning 33 

The idea of attesting model on control channel is certainly reasonable and can 

be implemented in theoretically sound way. In Machine Learning the problem of 

different data sets is well known, and solution is called Transfer learning. It 

aims at transferring knowledge from a model created on the train data set to 

the test data set, assuming they differ in some aspects, e.g. in distribution.  

 

 



Transfer learning applications 

4. Solution: transfer learning 34 

The need for data set adaptation arises in many Machine Learning 

applications. For example, spam filters can be trained on some public 

collection of spam, but when applied to an individual mail box may require 

personalization, i.e. adaptation to specific distribution of emails. 

 

Medicine is another field for transfer learning, as models trained on general 

population do not fit well individual subjects. The solution is to transfer such 

models to individuals with adaptation. Brain-computer interface (BCI) is 

another example of successful application of transfer learning [4] 

One common characteristic of these problems is that target 

domain of interest either has different distribution and little or no 

labeled data, or is unavailable at training time at all. 



Example 

4. Solution: transfer learning 35 

 

Often domain 

adaptation is 

hidden in disguise 

of unsupervised 

features learning. It 

is common practice 

to apply 

convolutional filters 

acquired from 

some image- or 

audio data set to 

another data set, 

sometimes from 

different domain. 

 
Example of artistic style transfer. From “A Neural Algorithm of Artistic Style”, link 

http://arxiv.org/pdf/1508.06576v2.pdf


Setting our goals 

4. Solution: transfer learning 36 

Our goal is formulated as follows: we have data from two channels of similar 

topology and different distribution. The first channel we consider “reliable” (well-

studied behavior, reliable data), we use it as Source for transfer learning. The 

second – “experimental” (less reliable data), we call it Target. We train logistic 

regression on Source channel and transfer it to Target channel. In addition, we 

may require our classifier to satisfy some other criteria, like KS and CvM tests. 

 

 
Only physicists can decide which of the two channels – 𝜏 and 𝐷𝑠 – is 

the Source, and which is the Target. In this section we depart from 

original competition defaults and assume the reverse order: 𝐷𝑠 is the 

Source (as more reliable data) and 𝜏 is the Target. It looks more natural 

to us, but we can be wrong in this assumption. “Implementation” 

section follows the original order set by the competition design, just like 

our real solution. 



Formal definitions 

4. Solution: transfer learning 37 

Let us introduce the notation of transfer learning between channels with focus 

on our problem of discriminating signal and background events. 

  

 let 𝑋 ∈ X be a data sample, and (𝑋, 𝑦) an event, where X  represents feature 

space and 𝑦 represents category of event {0, 1} (background vs. signal) 

 let 𝑃(𝑋) be the marginal probability distribution of 𝑋 

 following [5] we call D = {𝑋, 𝑃(𝑋)} a domain, which in our case is a channel 

from which we received data sample. 

 we have data for source domain D𝐷𝑠 and for target domain D𝜏 

 let 𝑓: X →Y  be the predictive target function. A task is defined as a predictive 

function and its output space T = {Y, 𝑓} 

 

 



Transductive Transfer Learning 

4. Solution: transfer learning 38 

As stated in [5], “transfer learning aims to help improve the learning of the 
target predictive function 𝑓T in DT using the knowledge in DS and TS where, in 

general, DS≠DT  and TS≠TT”. 

 

Our problem has two different but related domains D𝐷𝑠 and D𝜏, and the tasks 

are the same in both domains: discriminating signal from background events, 

T𝐷𝑠 = T𝜏 = T. Moreover, the source domain D𝐷𝑠 has labeled data set, and the 

target domain has unlabeled data D𝜏 (notice the difference with original 

competition formulation). This specific setting of the transfer learning problem is 

called transductive transfer learning (TTL) [4] 

 



Covariate Shift 

4. Solution: transfer learning 39 

We have shown in “Review of Machine Learning” section that the marginal 

probability distributions of source and target differ: 𝑃(𝑋𝐷𝑠) ≠ 𝑃(𝑋𝜏) The TTL 

approach pertinent to different distributions goes in literature under the name 

covariate shift [7, 8], domain adaptation or sample selection bias. Its 

assumption is that 𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑌|𝑋) = 𝑃𝑇𝑎𝑟𝑔𝑒𝑡(𝑌|𝑋). That is, given the same 

observation, the conditional distributions of 𝑌 are the same in the two domains. 

 

We have also shown that in the empirical risk minimization framework learning 

is the process of minimizing the loss function over training data: 

𝑓∗ = argmin
𝑓∈𝐹

1

𝑛
 𝑙(𝑓, 𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1

 

 



TTL framework 

4. Solution: transfer learning 40 

If the train dataset is drawn from 𝑃𝐷𝑠(𝑋, 𝑌) but we are interested in predictions 

when the test data come from 𝑃𝜏(𝑋, 𝑌), then each term can be penalized 

according to how likely each trial belongs to the target domain D𝜏: 

𝑓∗ = argmin
𝑓∈𝐹

1

𝑛
 

𝑃𝜏(𝑥𝑖, 𝑦𝑖)

𝑃𝐷𝑠(𝑥𝑖, 𝑦𝑖)
𝑙(𝑓, 𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1

 

The covariate shift assumption is that 𝑃𝐷𝑠(𝑌|𝑋) = 𝑃𝜏(𝑌|𝑋), applying Bayes' rule 
𝑃𝜏(𝑥𝑖,𝑦𝑖)

𝑃𝐷𝑠(𝑥𝑖,𝑦𝑖)
=

𝑃𝜏(𝑥𝑖)

𝑃𝐷𝑠(𝑥𝑖)
. Then, the risk minimization problem becomes: 

𝑓∗ = argmin
𝑓∈𝐹

1

𝑛
 

𝑃𝜏(𝑥𝑖)

𝑃𝐷𝑠(𝑥𝑖)
𝑙(𝑓, 𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1

 



Covariate shift: Toy example 
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Target samples 

left unlabeled 

intentionally, but 

we assume those 

on the left of the 

“True” boundary 

are blue, and 

those on the right 

are red.  

Only source 

samples 

participate in 

training. 



Toy example (continued) 
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Constraining the model on KS 

and CvM values 

4. Solution: transfer learning 43 

Finally, because we are limited in KS and CvM values we have to constrain our 

solution. To this end we incorporate KS and CvM into TTL framework: 

 

𝑓∗ = argmin
𝑓∈𝐹

1

𝑛
 

𝑃𝜏 𝑥𝑖

𝑃𝐷𝑠 𝑥𝑖
𝑙(𝑓, 𝑥𝑖 , 𝑦𝑖)

𝑛

𝑖=1

+ 𝜌(𝑓, 𝑘𝑠, 𝑐𝑣𝑚)  

 

where 𝜌(𝑓, 𝑘𝑠, 𝑐𝑣𝑚) - regularization term 

 

In order to estimate 
𝑃𝜏 𝑥𝑖

𝑃𝐷𝑠 𝑥𝑖
 we may, for example, set up a new logistic 

regression model to discriminate trials belonging to the 𝜏 channel from 

those of the 𝐷𝑠 channel, which requires just unlabeled data [4]. 



5. IMPLEMENTATION 

44 



Implementation 

5. Implementation 45 

For the competition we have submitted several different models. The transfer 

learning model achieved AUC = 0.996802 on Public Leader Board. It was 

improved to 0.998150 post competition. Source code can be downloaded from 

GitHub page https://github.com/alexander-rakhlin/flavours-of-physics 

 

As we remember, training on 𝐷𝑠 channel was prohibited by the competition 

requirements, what dictated us certain amendments to the Transductive 

Transfer Learning framework outlined in Section 4.  

 

In this implementation we transfer model from 𝜏 channel to 𝐷𝑠 channel. The 

other difference is how domain adaptation is implemented: instead of covariate 

shift we do calibration. 

https://github.com/alexander-rakhlin/flavours-of-physics
https://github.com/alexander-rakhlin/flavours-of-physics


Initial training 

5. Implementation 46 

We implemented two-stage process: 1) Initial training and 2) Adaptation stage. 

 

On the Initial stage the model is trained for maximum performance on labeled 

data from 𝜏 channel. This model is based on ensemble of 20 feed forward fully 

connected neural nets written in Python with Keras library. Each net comprises 

4 fully connected hidden layers F1-F4 with PReLU activations fed to a 2-way 

softmax output layer which produces a distribution over the 2 class labels. The 

hidden layers contain 75, 50, 30, and 25 neurons respectively. To avoid 

overfitting, dropout is used in F1, F2 and F3 layers: 

https://github.com/fchollet/keras


Neural Net architecture 

5. Implementation 47 

𝑥1 

𝑥2 

𝑥3𝑖 

𝑥4 

𝑥5 

𝑥6 

𝑥7 

𝑥𝑛 

… … 

 

 

… 
… … 

S
o

ft
m

a
x

 o
u

tp
u

t 

In
p

u
t 

 l
a

y
e

r 

𝑭𝟏 𝟕𝟓 

PReLU unit 

Dropout 

𝑭𝟐 𝟓𝟎 

𝑭𝟑 𝟑𝟎 
𝑭𝟒 𝟐𝟓 



Adaptation scheme 

5. Implementation 

First stage Net, 
already trained on 

𝜏 channel 

Second stage 
Net 

AUC 

KS 

Loss 

Powell search 

method 

Weights 

Weights 
(fixed) 

On the Adaptation stage first Net is fixed, its output is stacked with 

original features and cascaded to the second net of similar configuration: 

𝜏 
channel 

𝐷𝑠 

channel 

48 



Training the 2-nd Net 

5. Implementation 49 

𝐷𝑠 channel was labeled for other purpose than training, and training on 𝐷𝑠 

was prohibited. But calculation of KS and CvM values - allowed. The other 

metric to satisfy is AUC on 𝜏 channel. All 3 metrics are global and do not 

suit for stochastic gradient descent (SGD). Therefore we train this second 

Net in a special way (see code): 

 

1. We set initial weights of the second Net to reproduce output of the first 

Net. This is accomplished after 1-3 epochs of SGD with cross entropy 

loss on 𝜏 samples. 

2. Then adaptation of weights is done with help of Powell’s search method 
in minimize() function from scipy.optimize library. On this step 

the Net is fed with 𝜏 and 𝐷𝑠 samples and optimized directly for AUC, KS 

and CvM metrics. 

  



Adaptation (toy illustration) 

50 

The purpose of 

the second Net 

is to adopt the 

model to 𝐷𝑠 

channel with 

minimal and 

controlled loss 

of performance 

5. Implementation 
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Training the 2-nd Net (code) 

5. Implementation 51 

 

from scipy.optimize import minimize 

… 

pretrain = True 

if pretrain: 

    # pretrain model 

… 

    model.fit(Xt, yt_categorical, batch_size=64, nb_epoch=1, 

              validation_data=None, verbose=2, show_accuracy=True) 

… 

 

x0 = get_weights(model) 

print("Optimize %d weights" % len(x0)) 

objective = create_objective(model, pt.transductor_model_file, 

                             Xt, yt, Xa, ya, wa, Xc, mc, verbose=True) 

minimize(objective, x0, args=(), method='Powell') 

 

transductor_train.py 



Loss function 

5. Implementation 52 

On the second stage loss function incorporates AUC, KS, CvM metrics: 

 

 

 

 

As a result, we control all three values simultaneously. But the most 

important thing is that this approach provides statistical guarantee that 

the model satisfies all target metrics (AUC, KS, CvM) not by coincidence 

but as a result of statistical inference in their respective domains – in 

accordance with Machine Learning principles outlined in Section 2. 

 

loss = -auc + ks_importance * ks_loss + cvm_importance * cvm_loss 

transductor_train.py 



Closing remarks and suggestions 

5. Implementation 53 

The model appears more complex than it should be! Striving to satisfy some 

competition requirements we overdone fairly simple Transfer Learning 

Framework. We encourage the Organizers to lift “no training on control 

channel” requirement and try to create a model the other way round: on 𝐷𝑠 

channel and transfer it to 𝜏 channel…. If this has physical meaning, of course  

 

In general, we suggest to consider transfer learning as a method for 

modeling rare events based on models built in domains with more known 

and well-observed behavior. 

 

Some other ML approaches to consider for rare events detection [11]: 

• One-class classification (a.k.a. outlier detection, anomaly detection, 

novelty detection) 

• PU learning 

 

 



References 

[1] Blake T., Bettler M.-O., Chrzaszcz M.,  Dettori F., Ustyuzhanin A., Likhomanenko T., “Flavours of Physics: the 

machine learning challenge for the search of 𝜏-→𝜇-𝜇-𝜇+  decays at LHCb” link 

  

Machine Learning: 

 

[2] Y. S. Abu-Mostafa, H.-T. Lin, M. Magdon-Ismail, “Learning From Data”. AMLBook (March 27, 2012), ISBN-10: 

1600490069  

[3] Andrew Ng, “Part VI Learning Theory”. Stanford University CS229 Lecture notes link 

  

Transfer learning: 

 

[4] Olivetti, E., Kia, S.M., Avesani, P.: “Meg decoding across subjects.” In: Pattern Recognition in Neuroimaging, 2014 

International Workshop on (2014) link 

[5] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” Knowledge and Data Engineering, IEEE Transactions on, 

vol. 22, no. 10, pp. 1345–1359, Oct. 2010. 

[6] B. Zadrozny, “Learning and Evaluating Classifiers under Sample Selection Bias” In Proceedings of the Twenty-first 

International Conference on Machine Learning, ser. ICML ’04. New York, NY, USA: ACM, 2004, pp. 114+. 

[7] Jiang J., “A Literature Survey on Domain Adaptation of Statistical Classifiers” link 

[8] Adel T., Wong A., “A Probabilistic Covariate Shift Assumption for Domain Adaptation”. In Proceedings of the 

Twenty-Ninth AAAI Conference on Artificial Intelligence link 

References 54 

https://kaggle2.blob.core.windows.net/competitions/kaggle/4488/media/lhcb_description_official.pdf
http://cs229.stanford.edu/notes/cs229-notes4.pdf
http://arxiv.org/pdf/1404.4175.pdf
http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/da_survey.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9478/9875


References (continued) 

  

Kolmogorov-Smirnov test: 

  

[9] Wikipedia, “Kolmogorov–Smirnov test” link 

[10] Andrew P. Bradley, “ROC Curve Equivalence using the Kolmogorov-Smirnov Test”. The University of Queensland, 

School of Information Technology and Electrical Engineering, St Lucia, QLD 4072, Australia link 

 

Other methods: 

[11] Wikipedia, “One-class classification” link 

References 55 

https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test
https://www.researchgate.net/publication/257015153_ROC_curve_equivalence_using_the_Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/One-class_classification


Acknowledgements 

This work is dedicated in gratitude to 

Yaser S. Abu-Mostafa, Professor 

of Electrical Engineering and Computer 

Science at the California Institute of 

Technology. To great mentor, who taught 

me foundations of Machine Learning. 

56 

Claude E. Shannon with a young Yaser Abu-Mostafa 

Thank you for your attention! 

I would like to thank Tatiana Likhomanenko for her valuable comments that 

helped to improve the quality of this presentation. I want to thank respected 

organizers of Kaggle’s “Flavours of Physics: Finding 𝜏-→𝜇-𝜇-𝜇+ ” for very 

interesting and challenging competition, and for the recognition they awarded 

my work. It means a lot. 

https://work.caltech.edu/index.html
https://work.caltech.edu/index.html
https://work.caltech.edu/index.html
https://work.caltech.edu/index.html
https://work.caltech.edu/index.html

