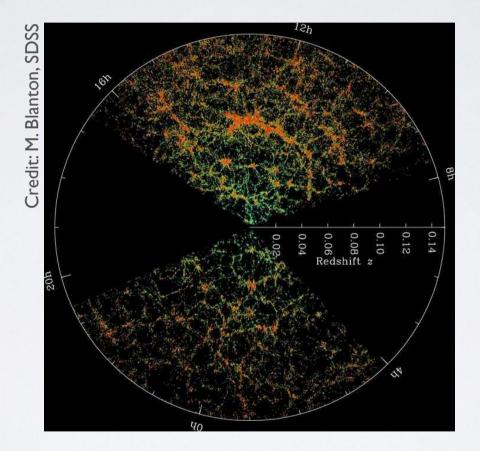
Camille Bonvin



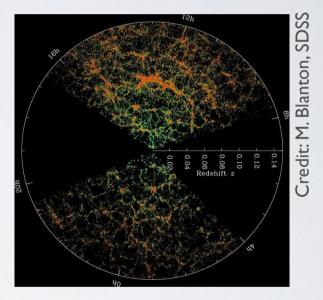
CERN theory retreat, les Houches November 2015

Large-scale structure

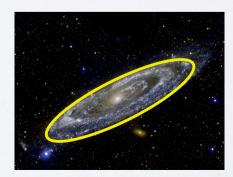
I am interested in the large-scale structure of the universe and its use to test gravity and dark energy.

Observationally:

Measure of the positions of galaxies
3D map



Measure of the shape and size



Link with theory

From 3D maps we extract: $\Delta = \frac{N-N}{\bar{N}}$ N number of galaxies

We relate it to fluctuations in the **dark matter** distribution

$$\Delta = \frac{\delta\rho}{\bar{\rho}}$$

We need to account for the fact that we observe in redshift space: Doppler shift Kaiser 1987

By measuring Δ we are sensitive to:

- the growth of fluctuations: test of gravity and dark energy
- the velocity: test Einstein's equations

Link with theory

From 3D maps we extract: $\Delta = \frac{N-N}{\bar{N}}$ N number of galaxies

We relate it to fluctuations in the **dark matter** distribution

$$\Delta = \frac{\delta \rho}{\bar{\rho}} - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$

We need to account for the fact that we observe in redshift space: Doppler shift Kaiser 1987

By measuring Δ we are sensitive to:

- the growth of fluctuations: test of gravity and dark energy
- the velocity: test Einstein's equations

Link with theory

From the size and shape of galaxies we measure gravitational lensing.

Inhomogeneities along the trajectory bent the geodesic

This amplifies the **size** of galaxies and generate additional **ellipticity**.

The distortions are sensitive to: $\int_0^{r_s} dr \frac{r_s - r}{2rr_s} \Delta_{\Omega}(\Phi + \Psi)$

We can test gravity by comparing **potentials** with **density**.

All observations are compatible with **LCDM**.

Beyond Newtonian approximations

Current expressions for Δ and lensing are based on **Newtonian approximations**.

Our observations are affected by relativistic effects.

Change the length of the geodesic: Shapiro time delay

Change the energy of the photons: redshift

Systematic calculation of our observables in the framework of **General Relativity**.

Result

Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011)

density redshift space distortion $\Delta(z, \mathbf{n}) = b \cdot \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$ lensing $+ \Psi - 2\Phi + \frac{1}{\mathcal{H}}\dot{\Phi} - 3\frac{\mathcal{H}}{k}V + \frac{2}{r}\int_{0}^{r}dr'(\Phi + \Psi) \\ + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} + \frac{2}{r\mathcal{H}}\right)\left[\Psi + \int_{0}^{r}dr'(\dot{\Phi} + \dot{\Psi})\right] \rightarrow \text{potential}$

Neglecting magnification bias and evolution bias

Result

CB 2008 CB, Andrianomena, Bacon, Clarkson, Maartens and Bull in preparation

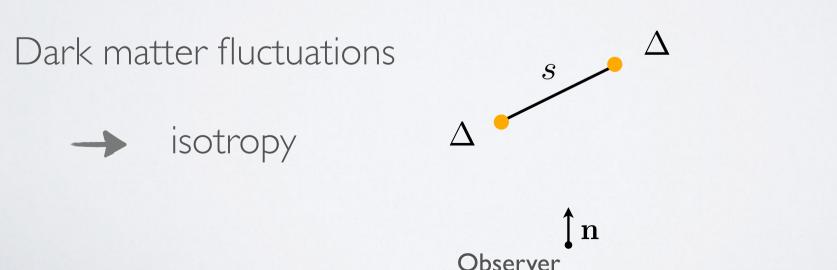
The convergence κ is a measurement of the observed size of galaxies

Gravitational lensing

Doppler lensing

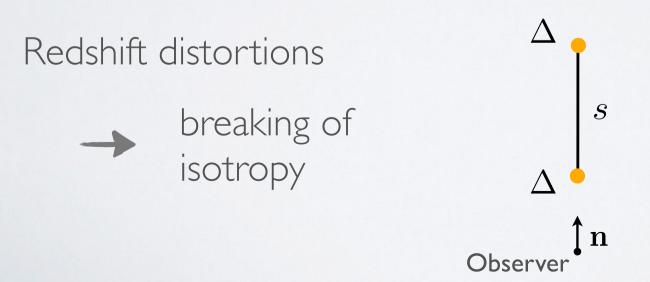
I am constructing new observables to **isolate** the relativistic effects: **CB**, Hui and Gaztanaga (2013)

- There are subdominant with respect to the Newtonian terms.
- We want to use them to test the consistency of General Relativity.
- We can look at the two-point correlation function:



I am constructing new observables to **isolate** the relativistic effects: **CB**, Hui and Gaztanaga (2013)

- There are subdominant with respect to the Newtonian terms.
- We want to use them to test the consistency of General Relativity.
- We can look at the two-point correlation function:

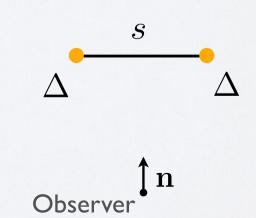


I am constructing new observables to **isolate** the relativistic effects: **CB**, Hui and Gaztanaga (2013)

- There are subdominant with respect to the Newtonian terms.
- We want to use them to test the consistency of General Relativity.
- We can look at the two-point correlation function:

Redshift distortions

breaking of isotropy



I am constructing new observables to **isolate** the relativistic effects: **CB**, Hui and Gaztanaga (2013)

- There are subdominant with respect to the Newtonian terms.
- We want to use them to test the consistency of General Relativity.
- We can look at the two-point correlation function:

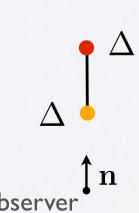
Relativistic effects → breaking of symmetry 1

I am constructing new observables to **isolate** the relativistic effects: **CB**, Hui and Gaztanaga (2013)

- There are subdominant with respect to the Newtonian terms.
- We want to use them to test the consistency of General Relativity.
- We can look at the two-point correlation function:

Relativistic effects

breaking of symmetry



I am constructing new observables to **isolate** the relativistic effects: **CB**, Hui and Gaztanaga (2013)

There are subdominant with respect to the Newtonian terms.

Which new tests of gravity can we do with the relativistic effects?

Relativistic effects

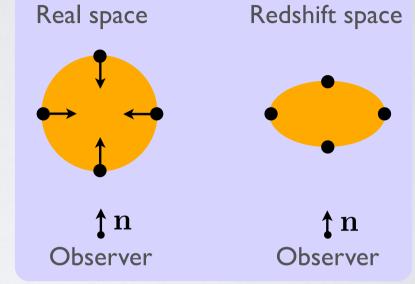
breaking of symmetry

Backup

Redshift distortions

Redshift distortions **break** the **isotropy** of the correlation function.

$$\Delta = b \cdot \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$



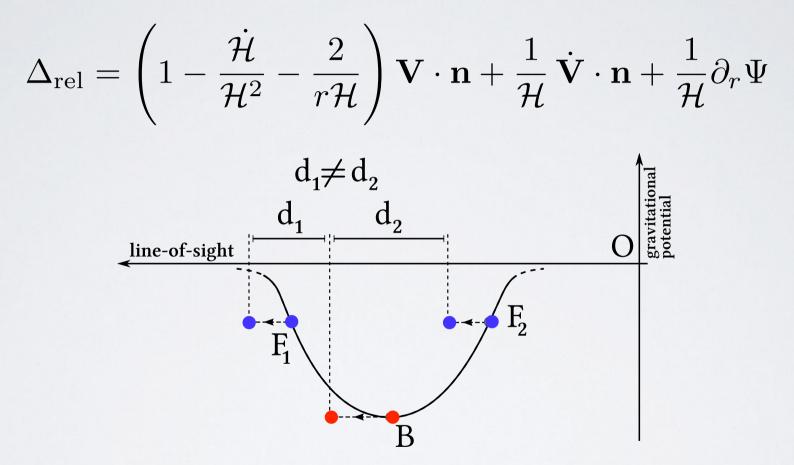
They generate a **quadrupole** and an **hexadecapole** Lilje and Efstathiou (1989), McGill (1990), Hamilton (1992)

$$\xi_2 = -\left(\frac{4bf}{3} + \frac{4f^2}{7}\right)\frac{1}{2\pi^2}\int dkk^2 P(k,z)j_2(k\cdot d) P_2(\cos\beta)$$

$$\xi_4 = \frac{8f^2}{35} \frac{1}{2\pi^2} \int dk k^2 P(k, z) j_4(k \cdot d) \, P_4(\cos\beta)$$

Cross-correlation

The following terms **break** the **symmetry**:



Similar to measurements of gravitational redshift in **clusters**. Wojtak, Hansen and Hjorth (2011), Sadeh, Feng and Lahav (2015)

Dipole in the correlation function

CB, Hui and Gaztanaga (2013)

$$\xi(d,\beta) = D_1^2 f \frac{\mathcal{H}}{\mathcal{H}_0} \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2}{r\mathcal{H}} \right) (b_{\rm B} - b_{\rm F}) \nu_1(d) \cdot \frac{\cos(\beta)}{r\mathcal{H}}$$

$$\nu_1(d) = \frac{A}{2\pi^2} \int \frac{dk}{k} \left(\frac{k}{H_0}\right)^{n_s - 1} T_\delta(k) T_\Psi(k) \, j_1(k \cdot d) \qquad \text{Observer } \mathbf{1} \mathbf{n}$$

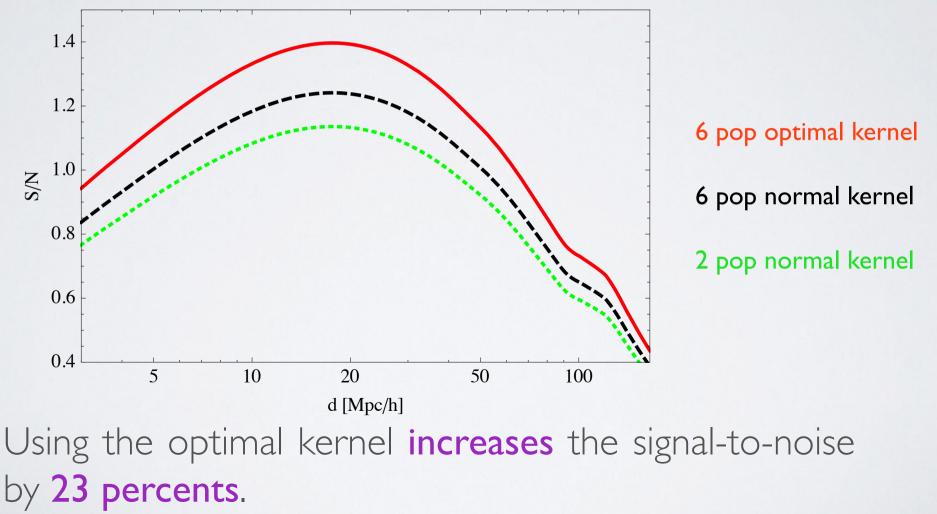
By fitting for a **dipole** in the correlation function, we **isolate** the relativistic effects. We get rid of the dominant monopole and quadrupole generated by density and velocities.

F

CB, Gaztanaga and Hui, in preparation

Result SDSS DR5

Measurement of the bias and the number density for **6 populations** with different luminosities Percival et al (2007)



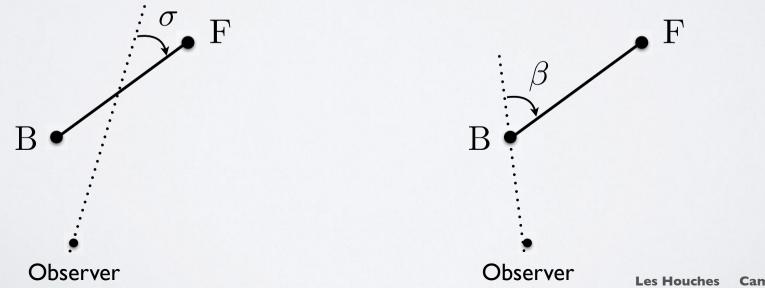
Gaztanaga, CB and Hui, in preparation

Measurements with BOSS

Two samples: LOWz z = 0.32 and CMASS z = 0.57

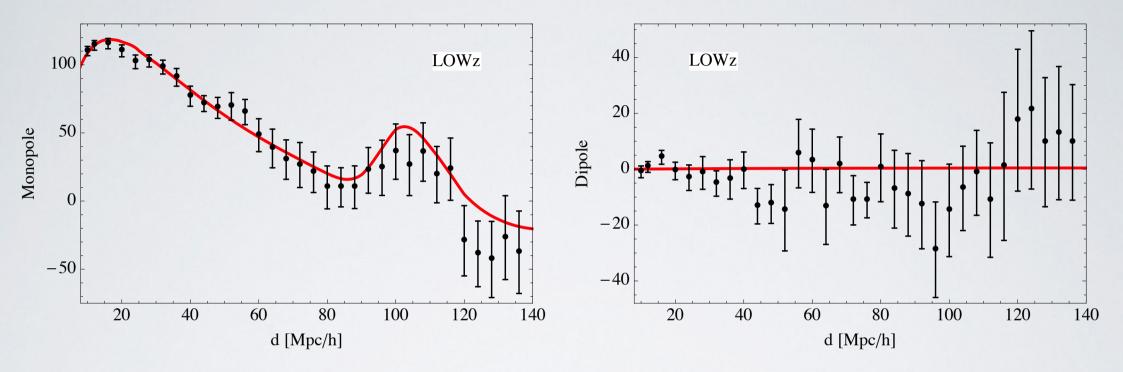
Simple case: two populations and standard kernel

 $\hat{\xi} = \sum_{ij} \sum_{L_i L_j = B, F} \cos \gamma_{ij} \, \delta n_{L_i}(\mathbf{x}_i) \delta n_{L_j}(\mathbf{x}_j) \delta_K(d_{ij} - d)$ We have different ways of **choosing** the **angle**:



Gaztanaga, CB and Hui, in preparation

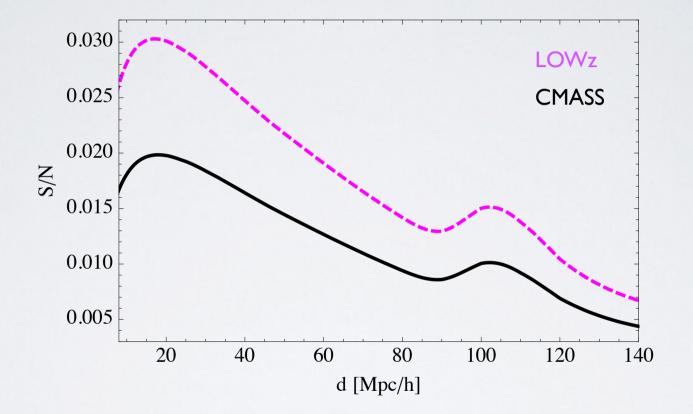
Measurement with the median angle



Predictions: we measure **separately** the monopole for the **bright** and **faint** populations and compare with predictions to fit for the bias.

The dipole is **compatible** with **zero**.

Signal-to-noise with the median angle



The signal-to-noise is much smaller than one: **no detection** possible.

