

Javi Serra
fellow' 15

Les Houches Centre de Physique 6 November 2015

CV

UAB
 Alex Pomarol

Compositeness at the electroweak scale

CV

Higgs boson discovery!

UAB

Alex Pomarol
Compositeness at the electroweak scale

CV

Higgs boson discovery!

Csaba Csaki / 3y.

UAB

Alex Pomarol
Compositeness at the electroweak scale

Research Interests

Physics Beyond the SM: ElectroWeak scale problem

Why are things big?

Research Interests

Physics Beyond the SM: ElectroWeak scale problem

Why are thingo big?
also motivated by other big things:
LHC phenomenology

Research Interests

Physics Beyond the SM: ElectroWeak scale problem

> Why are thingo big?

also motivated by other big things: LHC phenomenology

Cosmological \& astrophysical spin-offs:
Why is the Universe big? aka CC problem

LHC non-discoveries

Many bounds on New Physics at the TeV scale.

LHC non-discoveries

CMS Searches for New Physics Beyond Two Generations (B2G)
95\% CL Exclusions (TeV)

Bounds on Top partners are also significant.

$$
H \cdots\left(\boldsymbol{t} \cdots{ }^{-}+H \cdots T \cdots H\right.
$$

Top partners make the Higgs potential calculable: $m_{H}^{2} \simeq \frac{3 y_{t}^{2}}{8 \pi^{2}} m_{T}^{2}$
Models where H = pseudo Nambu-Goldstone boson of G/H

Option 1a: Non-standard T decays

Option 1a: Non-standard T decays

Beyond the Minimal Model: $\mathrm{SU}(4) / \mathrm{Sp}(4) \rightarrow H, \eta$

Option 1a: Non-standard T decays

Beyond the Minimal Model: $\mathrm{SU}(4) / \mathrm{Sp}(4) \rightarrow H, \eta$

It successfully controls relic abundance indirect detection direct detection

Option 1b: Twin Higgs

Non-colored Top partners

Normal bounds are evaded.

Option 1b: Twin Higgs

Non-colored Top partners

Normal bounds are evaded.

The exceptional model: $\mathrm{SO}(7) / \mathrm{G}_{2}$

Minimal in its symmetries and particle content.

twin top $=T=\mathrm{DM} \mid G=$ twin gluon I twin Higgs $=w=$ EM charged
Novel LHC phenomenology

Option 2: EFT approach

Give up on new light particles, probe properties of SM particles.

$$
\frac{i c_{L}^{(1)}}{m_{T}^{2}} H^{\dagger} D_{\mu} H \bar{q}_{L} \gamma^{\mu} q_{L}, \quad \frac{i c_{L}^{(3)}}{m_{T}^{2}} H^{\dagger} \sigma^{i} D_{\mu} H \bar{q}_{L} \gamma^{\mu} \sigma^{i} q_{L}, \frac{i c_{R}}{m_{T}^{2}} H^{\dagger} D_{\mu} H \bar{t}_{R} \gamma^{\mu} t_{R}
$$

Option 2: EFT approach

Give up on new light particles, probe properties of SM particles.

$$
\frac{i c_{L}^{(1)}}{m_{T}^{2}} H^{\dagger} D_{\mu} H \bar{q}_{L} \gamma^{\mu} q_{L}, \quad \frac{i c_{L}^{(3)}}{m_{T}^{2}} H^{\dagger} \sigma^{i} D_{\mu} H \bar{q}_{L} \gamma^{\mu} \sigma^{i} q_{L}, \frac{i c_{R}}{m_{T}^{2}}
$$

$$
c^{L}=c^{R}=1 \text { in SM }
$$

Very weak bounds form current LHC data

The LHC is not a precision machine

Option 2: EFT approach

The LHC is a high Energy machine

$t W \rightarrow t W$ scattering amplitude diverges with \boldsymbol{E}^{2}

Option 2: EFT approach

The LHC is a high Energy machine

The sensitivity to non-SM top-Z couplings is enbanced.

Option 2: EFT approach

Definitely worth it.
ttZ projection from Rontsch \& Schulze

Probes of Vacuum Energy

Cosmological evolution of pressure during Phase Transitions

The constant term in Einstein eq.'s changes Juring Phase Transitions.

Probes of Vacuum Energy

Cosmological evolution of pressure during Phase Transitions

The constant term in Einstein eq.'s changes during Phase Transitions.
How could we probe this behaviour?
Gravitational waves, neutron stars, ...

Thank you and see you around

