

Javi Serra fellow '15

Les Houches Centre de Physique 6 November 2015

<u>CV</u>

Compositeness at the electroweak scale

UAB Alex Pomarol Compositeness at the electroweak scale

CV

Higgs boson

Research Interests

Physics Beyond the SM: ElectroWeak scale problem

Why are things big?

Research Interests

Physics Beyond the SM: ElectroWeak scale problem

Why are things big?

also motivated by other big things: LHC phenomenology

Research Interests

Physics Beyond the SM: ElectroWeak scale problem

Why are things big?

also motivated by other big things: LHC phenomenology

LHC non-discoveries

Many bounds on New Physics at the TeV scale.

LHC non-discoveries

Bounds on Top partners are also significant.

$$H \cdots t + H \cdots T \cdots H$$

Top partners make the Higgs potential calculable: $m_H^2 \simeq \frac{3y_t^2}{8\pi^2}m_T^2$

Models where H =**pseudo Nambu-Goldstone boson** of G/H

Option 1a: Non-standard T decays

1 A

I by the custodial symmetry is easily implemented in

r is needed to properly ember polynomials in the couplings, pthe integration over the phase hese coefficients depend unique organion. Once the latter are proorduction in association with a priori, the sum of three term vely, for the effect of the left han ig the two. However in the soeft-handed and by the right-han op produced in association with e limit $m_t \to 0$ the interference $|g_{Xt_R}|^2$ terms will be equal be

EW single production

Figure 4: In red dashed: the cross sections of pair production. In green and blue the single production of the $\tilde{T}(\text{in association with a } b)$ and of the $X_{5/3}(\text{in association with a } t)$, respectively in model $\mathbf{M1}_5$ and $\mathbf{M4}_5$. The point chosen in the parameter space is $\xi = 0.2$, $c_1 = 1$ and y = 1. The value of c_2 is fixed, at each value of M_{Ψ} , in order to reproduce the top quark mass.

16

ifithe Frankrameter I by the custodial symmetry it is easily implemented in

r is needed to properly emb polynomials in the couplings, the integration over the phase hese coefficients depend unique Figration. Once the latter are, production in association with a priori, the sum of three term $G_{2}^{\mathrm{vely,\ for\ the\ effect\ of\ the\ left}}$ the two. However in the left eft-handed and by the right-ha e limit $m_t \to 0$ the interference $l g_{Xt_R}^2$ terms will be equal be

Give up on new light particles, probe properties of SM particles.

 $\frac{ic_L^{(1)}}{m_T^2} \underline{H^{\dagger}} D_{\mu} H \bar{q}_L \gamma^{\mu} q_L , \quad \frac{ic_L^{(3)}}{m_T^2} H^{\dagger} \sigma^i D_{\mu} H \bar{q}_L \gamma^{\mu} \sigma^i q_L , \quad \frac{ic_R}{m_T^2} H^{\dagger} D_{\mu} H \bar{t}_R \gamma^{\mu} t_R$ $Z_{\mu} \bar{t} \gamma^{\mu} \left(c^L g_{t_L}^{\rm SM} P_L + c^R g_{t_R}^{\rm SM} P_R \right) t$ $c^L = c^R = 1$ in SM

Give up on new light particles, probe properties of SM particles.

 $\frac{ic_L^{(1)}}{m_T^2} \underline{H^{\dagger} D_{\mu} H \bar{q}_L \gamma^{\mu} q_L}, \quad \frac{ic_L^{(3)}}{m_T^2} H^{\dagger} \sigma^i D_{\mu} H \bar{q}_L \gamma^{\mu} \sigma^i q_L}, \quad \frac{ic_R}{m_T^2} H^{\dagger} D_{\mu} H \bar{t}_R \gamma^{\mu} t_R$ $Z_{\mu} \bar{t} \gamma^{\mu} (c^L g_{t_L}^{\rm SM} P_L + c^R g_{t_R}^{\rm SM} P_R) t$ $c^L = c^R = 1$ in SM Very weak bounds form current LHC data

The LHC is not a precision machine

The LHC is a high *Energy* machine

 $tW \rightarrow tW$ scattering amplitude diverges with E^2

The LHC is a high *Energy* machine

 $W^-t \rightarrow W^-t, |\eta| < 2$

The sensitivity to non-SM top-Z couplings is enhanced.

Definitely worth it.

ttZ projection from Rontsch & Schulze

Probes of Vacuum Energy

Cosmological evolution of pressure during Phase Transitions

The constant term in Einstein eq.'s changes during Phase Transitions.

Probes of Vacuum Energy

Cosmological evolution of pressure during Phase Transitions

The constant term in Einstein eq.'s changes during Phase Transitions.

How could we probe this behaviour?

Gravitational waves, neutron stars, ...

Thank you and see you around