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NNLO theory and phenomenology
My goal: precise and realistic predictions for collider pheno

i.e.: higher order predictions for  
• arbitrary processes (non trivial color flow, final state jets…) 
• arbitrary observables 
• fiducial cuts on final state particles

The main challenges 
• interplay of soft/collinear and hard physics 

-> subtraction schemes, efficient computational frameworks… 
• two loop amplitudes 

-> two-loop integrals, symbols, Goncharov and beyond 
-> integrand reduction 

• one loop in soft/collinear regions



Example: Higgs and Jets
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Figure 10: Left pane: the lepton invariant mass distribution in pp ! H(e+µ�⌫⌫̄) + j at the

13 TeV LHC. Right pane: the W+W� boson transverse mass distribution in pp ! H(e+µ�⌫⌫̄)+ j

at the 13 TeV LHC. The selection criteria are described in the text. The insets show ratios of

di↵erential cross sections at di↵erent orders in perturbation theory for the factorization and the

renormalization scales set to the mass of the Higgs boson.

We find no indication that perturbative QCD breaks down and requires resummation for the

jet cut as low as 30 GeV. We have also studied the WW final state in H + j production at

the 13 TeV LHC. We find that most of the kinematic distributions used to distinguish this

channel from backgrounds, show uniform enhancement when NNLO QCD corrections are

included. Changes of shapes of such distributions – if any – are already properly captured

by the NLO QCD computations.

As a final remark, we note that the availability of higher order QCD predictions for

fiducial volume quantities should allow direct and precise studies of the ratios of Higgs

signals. The idea that ratios of cross sections are useful for reducing theoretical uncertainties

is, of course, well-known and appreciated. However, given the availability of the NNLO

QCD computations for fiducial cross sections, no extrapolations should be required. As an

illustration we compute the ratio of fiducial cross sections for pp ! H + j ! ��+ j at the 8

TeV LHC and the pp ! H + j ! WW ⇤ + j ! e+µ�⌫⌫̄ + j at the 13 TeV LHC. We obtain

RWW/�� =
�WW!e+µ�⌫⌫̄,13 TeV
H+j

���,8 TeV
H+j

= 2.39�0.06
+0.04, 2.33�0.04

+0.05, 2.32�0.04
+0.02, (6)

at leading, next-to-leading and next-to-next-to-leading order in perturbative QCD, respec-

tively. The convergence of the series is striking; at NNLO QCD, we are able to predict

RWW/�� with the precision of better than 2%. Since RWW/�� is proportional to the ratio

of the Higgs couplings to two photons and to W -bosons, confronting a precise prediction
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Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-
pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

LHC 13 TeV ✏N
3LO+NNLL+LL

R

⌃

N3LO+NNLL+LL
R

0-jet

[pb] ⌃

N3LO
0-jet

⌃

NNLO+NNLL
0-jet

pt,veto = 25GeV 0.539+0.017
�0.008 24.7+0.8

�1.0 24.3+0.5
�1.0 24.6+2.6

�3.8

pt,veto = 30GeV 0.608+0.016
�0.007 27.9+0.7

�1.1 27.5+0.5
�1.1 27.7+2.9

�4.0

Table 2. Predictions for the jet-veto efficiency and cross section at N3LO+NNLL+LLR, compared
to the N3LO and NNLO+NNLL cross sections. The uncertainty in the fixed-order prediction is
obtained using the JVE method. All numbers include the effect of top and bottom quark masses,
treated as described in the text, and are for a central scale µ

0

= mH/2.

is peculiar to our central renormalisation and factorisation scale choice, µR = µF = mH/2,
and does not occur at, for instance, µR = µF = mH (see Appendix B for details).

The zero-jet cross section is obtained as ⌃(pt,veto) = �tot ✏(pt,veto), and the inclusive
one-jet cross section is obtained as ⌃1�jet(pt,veto) = �tot (1� ✏(pt,veto)). The associated
uncertainties are obtained by combining in quadrature the uncertainty on the efficiency
obtained as explained above and that on the total cross section, for which we use plain
scales variations. The corresponding results are shown in fig. 6. We observe that the
effect of including higher-order corrections in the zero-jet cross section is quite moderate
at relevant pt,veto scales. This is because the small K factor in the total cross section
accidentally compensates for the suppression in the jet-veto efficiency. The corresponding
theoretical uncertainty is reduced by more than a factor of two.

The predictions for jet-veto efficiency and the zero-jet cross section are summarised
in Table 2, for two experimentally relevant pt,veto choices. Results are reported both at
fixed-order, and including the various resummation effects.

– 14 –

Higgs plus Jet@NNLO 
• fully differential 
• Higgs decays fully accounted for 
• can directly compare against data

Higgs with a jet-veto@N3LO 
• combine with the N3LO total 

cross section (Claude and 
Bernhard) 

• combine with NNLL small jet-R 
resummation (Frédéric, Gavin 
and Giulia)



Example: t-channel Single Top@NNLO
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Figure 2. Left pane: distribution of the second order coefficient dΓ(2)
t in invariant mass of the positron

and the hardest jet. Right pane: distribution of the second order coefficient dΓ(2)
t

in the opening angle of the

positron with respect to the W -direction of motion, in the W -rest frame. See text for details.

large, we fit bin-bin fluctuations and do not gain anything. However, we find that there is a range of
intermediate values of NL that we can use in the fit so that, on one hand, our final result for dΓ(2)

t /dEl

does no depend on the exact value of NL and, on the other hand, the resulting distribution is smooth.
Distributions shown in the right pane of Fig. 1 and in Fig. 2 are obtained following this procedure.

In the left pane of Fig. 2 we show NNLO QCD contributions to the kinematic distribution in
the invariant mass of the positron and the hardest (in energy) jet in the event. The jet here is
defined with the lepton collider k⊥-algorithm where the distance between two partons i and j is given
by yij = 2min(E2

i /m
2
t , E

2
j /m

2
t )(1 − cos θij). The relative angle θij is defined in the top quark rest

frame. For numerical computations, we take yij = 0.1. In the right pane of Fig. 2 we show NNLO
QCD correction to the kinematic distribution of the positron polar angle defined in the W -boson rest
frame, relative to the direction of motion of the W -boson6. This distribution is interesting because it
allows us to determine helicity fractions of the W -bosons in top decays. Indeed, to all orders in QCD
perturbation theory, the decay rate can be written as

dΓt

d cos θl
=

3

4
sin2 θlΓL +

3

8
(1 + cos θl)

2 Γ+ +
3

8
(1− cos θl)

2 Γ−. (6.5)

The widths ΓL,Γ± define partial decay rates into polarized W -bosons. The helicity fractions are con-
structed from partial widths as F±,L = Γ±,L/Γt, where Γt = Γ++Γ−+ΓL. Our result for dΓt/d cos θl
shown in Fig. 2 allows us to compute the NNLO QCD corrections to the helicity fractions. Upon doing
so, we find good agreement with similar results presented in Ref. [22]. For example, by fitting the
angular distribution shown in the right pane of Fig. 2 we find the NNLO QCD contributions to helicity
fractions7 [δFL, δF−, δF+] = [−0.0022(1), 0.0021(1), 0.0001(1)]. These numbers should be compared to
the results of analytic computations reported in Ref. [22], [δFL, δF−, δF+] = [−0.0023, 0.0021, 0.0002].
A good agreement between the two results is obvious.

7 Conclusions

In this paper we described a computation of NNLO QCD corrections to semileptonic decays of the
top quark at a fully-differential level. We have used a framework described in Refs. [29, 30, 35] that

6The momentum of the W -boson can be determined from the momentum of the recoiling hadronic system in top
decay.

7The exact definition of the helicity fractions and values of αs used to obtain these results can be found in Ref. [22].
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ProductionDecay

For the future 
• Higgs -> pheno studies 
• top -> merge production and 

decay, pheno 
• better techniques (new physics 

insight), new processes…



Precise di-boson predictions: gg->4l

Two-loop virtual corrections

For the case of double vector boson production,  
we can identify  six different two-loop topologies;
the differential equations can be ``rationalized’’ 
with the following (typical) change of variables
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Important issues: finding a suitable basis;  
choice of ``rational variables’’; boundary 
conditions for solutions of differential 
equations, analytic continuation.
Numerical evaluation of Goncharov’s 
polylogarithms and their mapping on 
conventional polylogarithms.
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Two-loop  calculations in QCD

An interesting recent development in the field is the suggestion by J. Henn to streamline the 
application of differential equations in external kinematic variables to compute master integrals

@

x

~

f = ✏Â

x

(x, y, z. . . )~f

The important point is that on  the right-hand side, the dimensional regularization 
parameter appears explicitly, and only as a multiplicative pre-factor. It is then possible 
to solve these equations iteratively  order-by-order in (d-4) since in each order 
of this expansion the above equation contains no homogeneous terms ( so that in 
each order in epsilon, the right-hand side is the source for the left-hand side). 

The idea by Henn streamlines and simplifies such computations significantly. This 
already lead to very impressive advances ( e.g. master integrals for Bhabha, V1 V2 
production) that will have interesting consequences for phenomenology.

Calculation of two-loop integrals relies on a large number of various  methods ( direct 
integration, Mellin-Barns, differential equations).   The method of differential equations
has been used to find master integrals for long time,  starting from papers by Kotikov and 
Remiddi in the early 1990s,  however it was never ``the method’’. 
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From scattering amplitudes…

… to precision phenomenologyNNPDF3.0, 13 TeV
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Figure 2: Up, left: cumulative cross section for gg ! (Z/�)(Z/�) ! e+e�µ+µ� at the 8 TeV

LHC as a function of the lower cut on four-lepton invariant mass. Up, right: distribution of the

invariant mass of the four leptons in the reaction gg ! (Z/�)(Z/�) ! e+e�µ+µ� at the 8 TeV

LHC. Lower panes show ratios of the LO (yellow) and NLO (blue) distributions evaluated at three

different scales to the LO distribution evaluated at µ = 2mZ . Low: same as above for the 13 TeV

LHC.

the emitted gluons, including the vanishingly small ones. Calculation of one-loop amplitudes

for gg ! ZZg process becomes unstable if the gluon in the final state becomes soft or

collinear to the collision axis. We deal with these instabilities by switching to quadruple

precision where appropriate. To obtain the gg ! ZZ cross section through NLO QCD,

we combine elastic and inelastic contributions using the qt-subtraction [47] and, as a cross-

check, the FKS subtraction [56] methods. The results that we present in the next Section

are obtained by combining computations performed using the two subtraction schemes.

11

• Large K-factor 
• not accounted for in 

NNLO scale variation  
• formally N3LO, but 

+5% correction

• Differential equations, 
canonical form 

• Long alphabets (symbol, co-
products…) 

• One loop: semi analytical 4d 
reduction, fast and stable 
num. eval.
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Figure 3: Left: transverse momentum distribution of an e+e� pair at the 13 TeV LHC. Right: the

hardest lepton transverse momentum distribution at the 8 TeV LHC. Lower panes show ratios of the

LO (yellow) and NLO (blue) distributions evaluated at three different scales to the LO distribution

evaluated at µ = 2mZ .

and for both the 8 TeV and the 13 TeV LHC. This result is important for studies of the

Higgs off-shell production where good understanding of the shape of four-lepton invariant

mass distribution is an important pre-requisite for constraining the Higgs width. Note that

for m4l > 2mt top-quark contributions, neglected in our computation, become relevant.

In Fig. 3 we show the transverse momentum distributions of the e+e� pair and of the hardest

lepton in the event. The QCD corrections to the transverse momentum distribution of the

e+e� pair decrease for large values of p
?,e+e� , similar to what is seen in the four-lepton

invariant mass distribution. On the other hand, the QCD corrections for the transverse

momentum distribution of the hardest lepton are independent of the lepton p
?

.

V. CONCLUSIONS

In this paper we computed QCD corrections to the production of a pair of Z-bosons in

gluon fusion through loops of massless quarks. We found that QCD corrections are large;

they change the production cross section by almost a factor of two. These large QCD

corrections are in line with expectations that transition of two gluons to a colorless final

state is strongly affected by QCD radiative effects; QCD corrections of similar magnitude

were observed earlier in theoretical calculations of gg ! H [59] and gg ! �� [60] cross

sections.
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Precise di-boson predictions: gg->4l
Future plans:

gg->VV and the Higgs 
off-shell region

• gg->WW, fiducial measurements, jet veto 
• thorough phenomenological studies
H->VV: large off-shell tail of the cross-section
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Figure 15. MZZ distributions for gg → H → ZZ → ℓℓ̄νℓν̄ℓ for MH = 125GeV. Applied cuts:
pT ℓ > 20GeV, |ηℓ| < 2.5, 76GeV < Mℓℓ < 106GeV, p/T > 10GeV. Other details as in Fig. 4.

gg (→ H) → ZZ → ℓℓ̄νℓν̄ℓ

σ [fb], pp,
√
s = 8TeV, MH = 125GeV ZWA interference

MT cut HZWA Hoffshell cont |Hofs+cont|2 R0 R1 R2

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7) 0.8997(6) 0.290(5)

MT1 < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2) 0.973(2) 0.902(5)

Table 6. Cross sections for gg (→ H) → ZZ → ℓℓ̄νℓν̄ℓ for MH = 125GeV without and with
transverse mass cut. Applied cuts: pT ℓ > 20GeV, |ηℓ| < 2.5, 76GeV < Mℓℓ < 106GeV, p/T >
10GeV. Other details as in Table 3.

4 Conclusions

In the Higgs search at the LHC, a light Higgs boson is not excluded by experimental data.

In the mass range 115GeV ! MH ! 130GeV, one has ΓH/MH < 10−4 for the SM Higgs

boson. We have shown for inclusive cross sections and cross sections with experimental

selection cuts that the ZWA is in general not adequate and the error estimate O(ΓH/MH)

is not reliable for a light Higgs boson. The inclusion of off-shell contributions is essential

to obtain an accurate Higgs signal normalisation at the 1% precision level. We have traced

this back to the dependence of the decay (and to a lesser degree production) matrix element

on the Higgs virtuality q2. For the H → WW,ZZ decay modes we find that above the

weak-boson pair production threshold the (q2)2 dependence of the decay matrix element

compensates the q2-dependence of the Higgs propagator, which results in a significantly

enhanced off-shell cross section in comparison to the ZWA cross section, when this phase
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[Kauer, Passarino (2012)]

• Past the VV threshold, 
enhanced decay into 
longitudinal vector bosons 
compensate the rapidly 
falling Higgs propagator!
!

• Small but persisting effect  
-> O(10%) of the peak 
cross-section!

!
• Width-independent effect

• Irrelevant for traditional searches if proper selection cuts are 
applied!

• If looked for, can give complementary information wrt 
traditional searches

• Signal/background 
interferences 

• The high mass region: 
multi-scale integrals with 
internal masses 

• Reliable predictions for 
off-shell tail (coupling 
and width constraints…)


