COSMOLOGY

or the place of CERN
in the Universe

TH retreat, Les Houches, 2015
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stone age to precision cosmology
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From stone age to precision cosmology
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Eldorado of data
today:
« CMB
- temperature anisotropies

- polarization anisotropies @ window to primordial GW

e wealth of astronomical / astroparticle data (halo profiles,
X-ray,”y , cosmic rays,...)

tomorrow: galaxy surveys
- number counts
- velocity statistics
- weak lensing
-2l cm

after tomorrow:

* 2| cm deep surveys

* spectral distortions

* multi-messenger astronomy (v, GW )
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| .Learn how to extract useful information from the data

2.Understand what Universe is made of at scales from
10! to 10%° m

3.Provide self-contained description of the early universe before
nucleosynthesis (~ 1 min after the Big Bang)
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2.Understand what Universe is made of at scales from

10°! to 10%° m /ls it a particle m
a light field ?
/-is It constant\

or evolving ? Dark Mater

- is it cold or
warm !

- is it interacting !

- does it decay /

anihilate ! /

- is It just
another form
of matter or
gravity is
different at
the ultra-long

kscales ? /

Dark Energy

- what are masses
of neutrinos ?
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Theorist’s tasks

3.Provide self-contained description of the early universe before
nucleosynthesis (~ 1 min after the Big Bang)

° Inflation: eXPerimentS did a 0.25 |- ‘\\I Plalnck TTJrIlovaJrIenslinngext
. . . 020 K, ® Oﬂ/
- theoretical input is \Q,Q
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0.10 -

- can we learn anything
about quantum gravity ! 005 |
(is string theory unique or
there are alternatives ?)
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* Reheating - how de they constrain inflationary models ?

. - i !
e Baryogenesis observable signatures ?
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Close interactions / long-term collaborations:
* Ecole Polytechnique Federale de Lausanne (EPFL)
e University of Geneva
* Geneva Observatory

* LAPTh, Annecy
* many others further away

Participation in EUCLID, eLisa, CMBPol, SKA

Wednesday, at | 1.30 in TH Common Room:

informal seminar about
anything related to cosmology




Flippo Vemizzi (IPhT) - CERN Associate 01/07/2015-30/04/2016

1) Primordial non-Gaussianity
from inflation

2) “Intrinsic” non-Gaussianity
in the CMB

Planck 2013

4) General parametrization of effects

of dark energy andmodified gravity

on structure formation: constraints,
forecasts. numerical Boltzmann code, etc

Euclid 2020
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3) Consistency relations in the LSS
and tests of EP violation
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About myself

e Staff at CERN & EPFL since 12.2013, on leave from
INR RAS (Moscow)

* Organization of CosmoCoffee,Wednesday seminar,
Academic Training

e Current research interests:

- application of QFT / statistical physics methods to LSS

- the role of Higgs in the early universe

- non-stringy UV completions of gravity as renormalizable
QFT (have to sacrifice Lorentz invariance or unitarity)

- tests of Lorentz invariance in visible and dark sectors

- RG flows with emergent space-time symmetries (Lorentz
invariance, SUSY)

- semiclassical methods for description of black hole
production



