

From stone age to precision cosmology

From stone age to precision cosmology

Eldorado of data

today:

- CMB
 - temperature anisotropies
 - polarization anisotropies window to primordial GW
- \bullet wealth of astronomical / astroparticle data (halo profiles, X-ray, γ , cosmic rays, ...)

Eldorado of data

today:

- CMB
 - temperature anisotropies
 - polarization anisotropies window to primordial GW
- \bullet wealth of astronomical / astroparticle data (halo profiles, X-ray, γ , cosmic rays, ...)

tomorrow: galaxy surveys

- number counts
- velocity statistics
- weak lensing
- 21 cm

Eldorado of data

today:

- CMB
 - temperature anisotropies
 - polarization anisotropies window to primordial GW
- \bullet wealth of astronomical / astroparticle data (halo profiles, X-ray, γ , cosmic rays, ...)

tomorrow: galaxy surveys

- number counts
- velocity statistics
- weak lensing
- 21 cm

after tomorrow:

- 21 cm deep surveys
- spectral distortions
- multi-messenger astronomy (ν , GW)

I.Learn how to extract useful information from the data

2.Understand what Universe is made of at scales from 10^{21} to 10^{26} m

3. Provide self-contained description of the early universe before nucleosynthesis (~ 1 min after the Big Bang)

I.Learn how to extract useful information from the data

I.Learn how to extract useful information from the data

• Control and exploit the relation between the observed signal and "primary" quantities (redshift space distortion, lensing, halo bias, ...)

I.Learn how to extract useful information from the data

• Control and exploit the relation between the observed signal and "primary" quantities (redshift space distortion, lensing, halo bias, ...)

- Describe structure formation in
- perturbative (LSS)

- and non-perturbative regime (halos)

I.Learn how to extract useful information from the data

• Control and exploit the relation between the observed signal and "primary" quantities (redshift space distortion, lensing, halo bias, ...)

- Describe structure formation in
- perturbative (LSS)

methods of perturbative QFT including effective field theory

- and non-perturbative regime (halos)

I.Learn how to extract useful information from the data

• Control and exploit the relation between the observed signal and "primary" quantities (redshift space distortion, lensing, halo bias, ...)

- Describe structure formation in
- perturbative (LSS)

methods of perturbative QFT including effective field theory

- and non-perturbative regime (halos)

self-similar dynamics, phenomenological models

I.Learn how to extract useful information from the data

• Control and exploit the relation between the observed signal and "primary" quantities (redshift space distortion, lensing, halo bias, ...)

Describe structure formation in

- perturbative (LSS)

methods of perturbative QFT including effective field theory

- and non-perturbative regime (halos)

self-similar dynamics, phenomenological models numerical N-bod simulations

2.Understand what Universe is made of at scales from

$$10^{21}$$
 to $10^{26}~{\rm m}$

2.Understand what Universe is made of at scales from 10^{21} to $10^{26}\,\mathrm{m}$

- is it constant or evolving?
- is it just another form of matter or gravity is different at the ultra-long scales?

2.Understand what Universe is made of at scales from

 10^{21} to $10^{26}\ {\rm m}$

- is it constant or evolving?
- is it just another form of matter or gravity is different at the ultra-long scales?

- is it a particle or a light field?
- is it cold or warm?
- is it interacting?
- does it decay / annihilate ?

2.Understand what Universe is made of at scales from

 $10^{21} \ {
m to} \ 10^{26} \ {
m m}$

- is it constant or evolving?
- is it just another form of matter or gravity is different at the ultra-long scales?

26.8%

68.3%

Dark Matter

Dark Energy

Ordinary Matter 4.9%

- is it interacting?
- does it decay / annihilate ?

- what are masses of neutrinos?

- 3. Provide self-contained description of the early universe before nucleosynthesis (~ 1 min after the Big Bang)
- Inflation: experiments did a good job

- 3. Provide self-contained description of the early universe before nucleosynthesis (~ 1 min after the Big Bang)
- Inflation: experiments did a good job
 - theoretical input is needed to limit the range of inflationary models

- 3. Provide self-contained description of the early universe before nucleosynthesis (~ 1 min after the Big Bang)
- Inflation: experiments did a good job
 - theoretical input is needed to limit the range of inflationary models
 - can we learn anything about quantum gravity? (is string theory unique or there are alternatives?)

- 3. Provide self-contained description of the early universe before nucleosynthesis (~ 1 min after the Big Bang)
- Inflation: experiments did a good job
 - theoretical input is needed to limit the range of inflationary models
 - can we learn anything about quantum gravity? (is string theory unique or there are alternatives?)

- Reheating
- Baryogenesis

- 3. Provide self-contained description of the early universe before nucleosynthesis (~ 1 min after the Big Bang)
- Inflation: experiments did a good job
 - theoretical input is needed to limit the range of inflationary models
 - can we learn anything about quantum gravity? (is string theory unique or there are alternatives?)

- Reheating
- Baryogenesis

- how de they constrain inflationary models?
- observable signatures ?

Staff

Diego Blas

Sergey Sibiryakov

Filippo Vernizzi

Fellows

Camille Bonvin

Guido D'Amico

Daniel Figueroa

Wessel Valkenburg

Close interactions / long-term collaborations:

- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- University of Geneva
- Geneva Observatory
- LAPTh, Annecy
- many others further away

Close interactions / long-term collaborations:

- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- University of Geneva
- Geneva Observatory
- LAPTh, Annecy
- many others further away

Participation in EUCLID, eLisa, CMBPol, SKA

Close interactions / long-term collaborations:

- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- University of Geneva
- Geneva Observatory
- LAPTh, Annecy
- many others further away

Participation in EUCLID, eLisa, CMBPol, SKA

Wednesday, at 11.30 in TH Common Room:

informal seminar about anything related to cosmology

Filippo Vernizzi (IPhT) - CERN Associate 01/07/2015-30/04/2016

5) New classes of theoretically consistent scalar-tensor theories of gravity

About myself

- Staff at CERN & EPFL since 12.2013, on leave from INR RAS (Moscow)
- Organization of CosmoCoffee, Wednesday seminar, Academic Training
- Current research interests:
 - application of QFT / statistical physics methods to LSS
 - the role of Higgs in the early universe
 - non-stringy UV completions of gravity as renormalizable QFT (have to sacrifice Lorentz invariance or unitarity)
 - tests of Lorentz invariance in visible and dark sectors
 - RG flows with emergent space-time symmetries (Lorentz invariance, SUSY)
 - semiclassical methods for description of black hole production