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         as a stringent test of the SM

• Evolution of the (th - exp) tension [Jegerlehner, Nyffeler 0902.3360 ] 

aµ

The two uncertainties given are the statistical and the systematic ones. The total error in square brackets
follows by adding in quadrature the statistical and systematic errors. In Table 1 all results from CERN
and E821 are collected. The new average is completely dominated by the BNL results. The individual
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Fig. 7. Results for the individual E821 measurements, together with the new world average and the theoretical prediction. The
CERN result is shown together with the theoretical prediction by Kinoshita et al. 1985, at about the time when the E821
project was proposed.The dotted vertical bars indicate the theory values quoted by the experiments.

measurements are shown also in Fig. 7. The comparison with the theoretical result including predictions
from SM extensions will be discussed later in Sect. 7. In the following sections we first review the SM
prediction of aµ.

3. QED Prediction of g − 2

Any precise theoretical prediction requires a precise knowledge of the fundamental parameters. In QED
these are the fine structure constant α and the lepton masses. As the leading order result is α

2π and since
we want to determine aℓ with very high precision, the most important basic parameter for calculating aµ is
the fine structure constant. Its most precise value is determined using of the electron anomalous magnetic
moment

aexp
e = 0.001 159 652 180 73(28)[0.24 ppb] , (42)

which very recently [105,106] has been obtained with extreme precision. Confronting the experimental value
with the theoretical prediction as a series in α (see Sect. 3.2 below) determines [107,108,106]

α−1(ae) = 137.035999084(51)[0.37 ppb] . (43)

This new value has an uncertainty 20 times smaller than any preceding independent determination of α and
we will use it throughout in the calculation of aµ.

Starting at 2–loops, higher order corrections include contributions from lepton loops in which different
leptons can circulate and results depend on the corresponding mass ratios. Whenever needed, we will use
the following values for the muon–electron and muon–tau mass ratios, and lepton masses [37,38,103,104]

mµ/me = 206.768 2838 (54) , mµ/mτ = 0.059 4592 (97) ,

me = 0.510 9989 918(44)MeV , mµ = 105.658 3692 (94)MeV , mτ = 1776.99 (29)MeV .
(44)
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         as a stringent test of the SM

•             =  11659208.0(6.3) × 10 -10 (0.54ppm) [BNL, 2006-2008 ]  

• Current theoretical and experimental estimates: 

➡ discrepancy: 2.9- 3.6 stand. dev. discrepancy   (                   - data ) 

➡                             = 287(63)(51) × 10 -11  [Jegerlehner, Nyffeler 0902.3360 ]

• New experiments (J-PARC, Fermilab E989) expected to perform 4× more precise 
measurement 

• Improved precision of the theoretical estimates with dominating uncertainty required

aµ

aexp
µ

� ath,SM
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aexp
µ

e+e�, ⌧



         as a stringent test of the SMaµ

• Lattice provides ab initio setup for the computation of hadronic contribution(s) 

• Completely independent from the current phenomenological determinations 

• HVP leading order: largest uncertainty! 

• HLbL next, very important to compute, requres QED

Introduction HVP HLbL Summary/Outlook References Nature - Standard Model

Experiment - Standard Model Theory = di↵erence

SM Contribution Value±Error (⇥1011) Ref
QED (5 loops) 116584718.951 ± 0.080 [Aoyama et al., 2012]

HVP LO 6923 ± 42 [Davier et al., 2011]

6949 ± 43 [Hagiwara et al., 2011]

HVP NLO �98.4 ± 0.7 [Hagiwara et al., 2011]

[Kurz et al., 2014]

HVP NNLO 12.4 ± 0.1 [Kurz et al., 2014]

HLbL 105 ± 26 [Prades et al., 2009]

Weak (2 loops) 153.6 ± 1.0 [Gnendiger et al., 2013]

SM Tot (0.42 ppm) 116591802 ± 49 [Davier et al., 2011]

(0.43 ppm) 116591828 ± 50 [Hagiwara et al., 2011]

(0.51 ppm) 116591840 ± 59 [Aoyama et al., 2012]

Exp (0.54 ppm) 116592089 ± 63 [Bennett et al., 2006]

Di↵ (Exp� SM) 287 ± 80 [Davier et al., 2011]

261 ± 78 [Hagiwara et al., 2011]

249 ± 87 [Aoyama et al., 2012]

Tom Blum (UCONN / RBRC) Progress on computing the muon anomalous magnetic moment from lattice QCD(+QED)



Hadronic contributions to     from the lattice     

• Computing hadronic vacuum polarisation(HVP) contribution as a part of RBC&UKQCD 

• Computing leading isospin breaking correction (LIBE)  to HVP   

• Prospects: disconnected contribution, improving LIBE to HVP —> QED+QCD
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Hadronic vacuum polarisation
• Can be computed in Euclidean space-time [Blum, 2003; Lautrup et al., 1971]

Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Lautrup, de Rafael ’69, Blum ’02 ]

We seek to compute the e�ect of hadronic vacuum polarisation contributions to aµ which
are obtained by calculating contributions to the graph in (2.3) of the form

q, µ

p p0

had
. (2.5)

As described in [10] the contribution to aµ from the one-loop diagram equivalent to the
graph (2.5) with the hadronic blob removed can be expressed as

�� a(1)
µ =

�

�

� �

0

dQ2 f(Q2) (2.6)

where the kernel function f(Q2) is divergent as Q2 � 0 and can be expressed

f(Q2) =
m2

µQ
2Z(Q2)3(1 � Q2Z(Q2))

1 + m2
µQ

2Z(Q2)2
Z(Q2) = �

Q2 �
�

Q4 + 4m2
µQ

2

2m2
µQ

2
. (2.7)

From this, the expression for the hadronic vacuum polarisation contribution can be
obtained with the insertions:

had
�� a(2)had

µ =
��

�

�2
� �

0

dQ2 f(Q2) ⇥ �̂(Q2) (2.8)

where �̂(Q2) is the infra-red subtracted transverse part of the hadronic vacuum polari-
sation

�̂(Q2) = �(Q2) � �(0) �µ�(q) = (q2gµ� � qµq�)�(q2) (2.9)

q, µ q, �had � i�µ�(q) (2.10)

at Euclidean momentum Q2 = �q2. The hadronic vacuum polarisation function �µ�(q)
can be computed as the Fourier-transformed two-point correlator

�µ�(q) =

�
d4x eiq·(x�y)hJµ(x)J�(y)i (2.11)

involving the electromagnetic current

Jµ(x) =
�

i

Qi�̄
i�µ�

i (2.12)

where �i is the quark field of flavour i and Qi is its charge. The path-integral used in the
expectation value in (2.11) will involve only hadronic fields, i.e. quarks and gluons.

3

aHLOµ = (↵
⇡ )

2
R1

0
dQ2f (Q2)⇥⇧̂(Q2)

f (Q2) = mµ2Q2Z 3(Q2) 1�Q2Z(Q2)
1+m2

µQ2Z2(Q2)

Z(Q2) = (
p

(Q2)2 + 4m2
µQ2) � Q2)/(2m2

µQ
2)
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Hadronic vacuum polarisation
• Can be computed in Euclidean space-time [Blum, 2003; Lautrup et al., 1971]

Hadronic vacuum polarisation on the lattice
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Figure 4: Value of the fit parameter am1 in fits using the ansatz (3.4) on the � = 2.25 lattice
at amu = 0.004. The vector mass amV as determined on this lattice is shown in green. Note
in the fit where m1 was fixed, it was only constrained to lie within the green band. It is clear
that for a high Q2

C , m1 will emerge at the upper limit of the band, indicating some tension
between the fit-form and the data, but as can be seen in Fig. 3, this has very little impact on
the goodness of the fit.

a precise result for this quantity, and this must be combined with the use of twisted
boundary conditions [14] in order to access data at lower values of the lattice momentum.
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Figure 5: Examples of the integrand in the rescaled integral (3.6).
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Transverse projection: Qµ = 0

Take only diagonal components ⇧µµ

⇧(Q2) = �⇧µµ(Q2)

Q2
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[RBC-UKQCD, Boyle et al. ‘12]



Strange HVP: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Introduction HVP HLbL Summary/Outlook References Doing the integral: fits, moments, sums, ... finite volume e↵ects strange disconnected diagrams

Strange: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Strange contribution to HVP, 2+1 flavor Möbius DWF,
physical quark mass ensemble

Tom Blum (UCONN / RBRC) Progress on computing the muon anomalous magnetic moment from lattice QCD(+QED)



Strange HVP: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]
Introduction HVP HLbL Summary/Outlook References Doing the integral: fits, moments, sums, ... finite volume e↵ects strange disconnected diagrams

Strange: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Histogram of results from various strategies. Results insensitive

Tom Blum (UCONN / RBRC) Progress on computing the muon anomalous magnetic moment from lattice QCD(+QED)

Light HVP (u,d): needs quite a bit more work …

• remarkable agreement  with 
HPQCD 2+1+1 staggered 
fermion result: 53.41(59)



• Once the aimed precision for the connected HVP from the lattice is achieved (in the 

isosymmetric theory) —> the effects we neglected so far might become important:  

- disconnected contribution,  
- isospin breaking corrections,  
- charm in the sea, … 

• In the phenomenological determination of           ,   
      model calculation of  [Jegerlehner,Szafron ’11] 

➡ correctly applied IB correction reduced the 
         discrepancy between             and     - estim.   

• It would be good to have a model independent                   [Plot: B. Chakraborty, LATTICE 2015] 

     (non-perturbative) estimate of IB effects: lattice QCD+QED

Computing IB correction to the HVP

ahadµ

e+e� ⌧

Comparison of total aHVP,lo
µ with phenomenology

 640  660  680  700  720  740

aµ
HVP,lo(x 10-10)

HPQCD (lattice)

ETMC (lattice)

Davier et al. (e+e-)
Davier et al. (τ)

Jegerlehner (e+e-+τ)

Hagiwara et al. (e+e-)

HLS (e+e-+τ)

Bipasha Chakraborty, Glasgow () HVP contribution to muon (g-2) from LQCD Kobe, July 14th 13 / 14



Computing IB correction to the HVP

• RM123 method [arXiv:1303.4896] for computing leading isospin breaking corrections (LIBE) 

➡ Expanding an observable (in the isospin broken theory) with respect to the isosymmetric 

QCD result 

• For a start: applying it to the connected part of the HVP 

• Main advantage w. respect to simulating QED+QCD: 

➡ Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡ No extrapolation in  

• Main disadvantage: one needs to compute many diagrams, mainly 3pt and 4pt functions 

➡ Can be overcome with careful organisations of the computation [DD-SCOR code, N.Tantalo]
➡ Code base for lattice QCD with isospin breaking corrections

↵em

O(↵em) O(mu �md)

Isospin Breaking Effects on the Lattice Nazario Tantalo

couplings of isosymmetric QCD. This is the strategy followed in refs. [13, 8, 14] and in previous
works on the subject. Although the matching is somehow “automatic” in this approach, the de-
tails of the renormalization prescriptions have to be specified when quoting results to allow their
comparison with other determinations and with experimental data.

In the following we shall talk about “leading isospin breaking effects” (LIBE). These are
defined by expanding eq. (3.3) in powers of8 gi �g0

i ,

DO =

(

e2 ∂
∂e2 +

⇥

g2
s � (g0

s )
2⇤ ∂

∂g2
s
+[m f �m0

f ]
∂

∂m f
+[mcr

f �mcr
0 ]

∂
∂mcr

f

)

O . (3.4)

Note that the counter-terms in the perturbative expansion with respect to âem, i.e. in the opera-
tor product expansion of eq. (3.1), do arise because the bare parameters (the renormalization con-
stants) of the two theories are different. Indeed, once expressed in terms of renormalized quantities,
eq. (3.4) becomes

DO =

8

<

:

ê2 ∂
∂ ê2 +

2

4ĝ2
s �
 

Zgs

Z0
gs

ĝ0
s

!2
3

5

∂
∂ ĝ2

s
+

"

m̂ f �
Zm f

Z0
m f

m̂0
f

#

∂
∂ m̂ f

+Dmcr
f

∂
∂mcr

f

9

=

;

O . (3.5)

The divergent quantities Zm f /Z0
m f

, Dmcr
f = mcr

f �mcr
0 and Zgs/Z0

gs
appearing in the previous equation

correspond to the counter-terms c f
m, c f

cr and cgs of eq. (3.1). The electric charge does not need to be
renormalized at this order,

ê2 = e2 = 4pâem =
4p
137

, (3.6)

The problem of the renormalization of the electric charge would have to be faced in the calcula-
tion of next-to-leading IBE. From the phenomenological point of view, given the size of the other
hadronic uncertainties, sub-leading IBE can be safely neglected by now. Note that whenever lattice
data are analyzed by neglecting terms of O[âem(m̂d � m̂u)] one is actually computing LIBE.

4. LIBE as a perturbation

In refs. [15, 7] it has been shown that LIBE can be calculated efficiently and accurately by
expanding the lattice QCD+QED path-integral of eq. (2.4) in powers of gi �g0

i

O(~g) =

⌦ �

1+ Ṙ+ · · ·
� �

O+ Ȯ+ · · ·
� ↵A,~g0

⌦

1+ Ṙ+ · · ·
↵A,~g0 = O(~g0)+DO . (4.1)

In these references it has been developed a “graphical notation” as a tool to make calculations.
The building blocks of the graphical notation are the corrections to the quark propagator (at fixed
QCD gauge background) shown in Figure 2. A dictionary to translate in local operator language

8Note the absence in eq. (3.4) of terms linear in e and gs (physical observables are QED and QCD gauge invariant)
and the presence of a term proportional to the shift of the critical masses mcr

f � mcr
0 that is needed in theories in which

chirality is broken.

6

[Gasser, Rusetsky, Scimemi ’03, RM123 ’13]



• Reducing finite volume effects - they are expected to be main source of systematics 

• Currently: global zero mode subtracted:   

➡ Violates reflection positivity and does not have a well defined                   limit [1406.4088] 

• Removing the zero mode of the field on each time slice separately [Hayakawa, Uno ‘08] 

➡ this explicitly violates the hypercubic symmetry of the lattice -> no trace of the violation in 

the inf. vol limit  [1406.4088] 

• Charged particles in QED/QED+QCD with C* BCs —> FV effects for masses even smaller  

➡ [Alberto, Agostino, … arXiv:1509.01636] 

• Eager to try this out for LIBE of HVP as well 

• Getting the disconnected contributions (beyond el-quenched)

Prospects I: conceptual improvements

It is important to have a solid analytical handle on QED finite-volume (FV) corrections, because they are
expected to be large due to the long-range nature of the electromagnetic interaction. Unlike QCD, QED has no
gap and the photon remains massless even in the presence of interactions. While the gap in QCD guarantees
that FV corrections fall off exponentially in LM

⇡

for sufficiently large LM
⇡

[S18], in the presence of QED,
quantities are much more sensitive to the volume and topology of spacetime. It is the main characteristics of
this sensitivity which concerns us in this section. We use the computed analytical expressions in two important
ways. The first is to decide on the finite-volume formulation of QED to use in our numerical work. The second
is to test our implementation of QED and the corresponding codes.

The work presented in this paper is concerned with spin-1/2 baryons and spin-0 pseudoscalar mesons. Thus
we compute the FV corrections in spinor and scalar QED. Our photon field has periodic boundary conditions,
while the quark fields are periodic in space and antiperiodic in time. Therefore, baryon fields are antiperiodic
in time and periodic in space, while meson fields are periodic in all directions. As a result, the topology of
our spacetime is the four-torus, T4, up to a twist for baryons in the time direction. Note that for corrections in
inverse powers of the torus size, only the photon boundary conditions are relevant.

As discussed in Sec. 2.1, we consider two different versions of FV QED:

• the first where only the four-momentum zero-mode of the photon field is eliminated, i.e. A
µ

(k = 0) ⌘ 0,
which we denote QED

TL

;

• the second where all three-momentum zero-modes of the photon field are eliminated, i.e. A
µ

(k0,~k =

~
0) ⌘ 0 for all k0, which we denote QED

L

.

Power-like FV corrections arise from the exchange of a photon around the torus. They are obtained by
comparing results obtained in FV with those of our target theory, QED in infinite volume (IV), that is in R4.
Here we are interested in the FV corrections to a charged particle’s pole mass. This is the physical mass of the
particle, as obtained by studying the Euclidean time-dependence of a relevant, zero three-momentum, two-point
correlation function. This mass is gauge invariant and we use this freedom to work in the simpler Feynman
gauge.

The FV corrections to the mass m of a point particle of spin J and of charge q in units of e, on a torus of
dimensions T ⇥L3, is given by the difference of the FV self energy, ⌃

J

(p, T, L), and its IV counterpart, ⌃
J

(p),
on shell:

�mnJ
J

(T, L) ⌘ mnJ
J

(T, L)�mnJ
= (qe)2�⌃

J

(p = im, T, L)

⌘ (qe)2 [⌃
J

(p = im, T, L)� ⌃

J

(p = im)] , (7)

where n
J

= 1 (resp. n
J

= 2) for spin J = 1/2 fermions (resp. spin J = 0 bosons) and p = im is a shorthand
for p = (im,~0) (with /p ! im for spin-1/2 fermions). Here and below, quantities without the arguments L and
T are infinite spacetime-volume quantities.

Because we only work in a regime where electromagnetic effects are linear in the fine structure constant ↵,
we evaluate the self-energy difference in Eq. (7) at one loop. At this order, we generically write differences of
self energies or of contributions to self energies as

�⌃(p, T, L) =

2

4

0
X

Z

k

�
Z

d4k

(2⇡)4

3

5 �(k, p) , (8)

where k is the momentum of the photon in the loop and �(k, p) is the appropriate, IV self-energy integrand, a
number of which are defined below. The individual FV and IV terms in Eq. (8) are generally UV and possibly
IR divergent. Thus, individually they should be regularized, e.g. with dimensional regularization. However,
on shell the IV integral is IR finite and in finite volume, the sums are IR finite because the FV formulations of
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Prospects II: Disconnected contributionHadronic vacuum polarisation

Connected and disconnected contribution to the HVP
The leading disconnected contribution to the anomalous magnetic moment of the muon Vera Gülpers

Figure 1: The connected and the disconnected contribution to the hadronic vacuum polarization.

1. Introduction

The anomalous magnetic moment of the muon aµ is one of the most precisely measured quan-
tities in particle physics. A deviation of ⇡ 3� between the experimental and the theoretical value
has persisted for many years. From the theory side, the largest fraction of the error comes from the
hadronic vacuum contribution (hvp), which is the leading order QCD contribution to aµ . Currently,
the best estimate of the hvp relies on a semi-phenomenological approach using the cross section
of e+ e� � hadrons. In the past few years, a lot of effort has been undertaken to calculate the hvp
from first principles using lattice techniques [1, 2, 3, 4]. However, the quark-disconnected contri-
bution to the hvp is generally neglected. This may be a significant source of systematic error, since
in partially quenched chiral perturbation theory, it was estimated that the disconnected contribution
could be as large as �10% of the connected one [5].

We explicitly compute the disconnected contribution to the hvp with O(a)-improved Wilson
fermions using the mixed-representation method [6, 7], where the hadronic vacuum polarization is
calculated using the vector correlator

G��(x0) = �1
3

�
d3x

�
j�
k(x) j�

k(0)
�

with j�
k =

2
3

u�ku� 1
3

d�kd + . . . (1.1)

as follows:

�̂(Q2) = 4�2
��

0

dx0 G��(x0)

�
x2

0 � 4
Q2 sin2

�
1
2

Qx0

��
. (1.2)

The vector correlator G��(x0) receives a connected and a disconnected contribution as shown in
figure 1. We calculate the required disconnected quark loops using stochastic sources and a hopping
parameter expansion as described in [8].

2. Results for the vector correlator

In the following we will concentrate on the vector correlator for light and strange quarks
combined. The corresponding electromagnetic current

j�s
µ = j�µ + js

µ =
1
2

(u�µu�d�µd)
� �� �

I=1, j�
µ

+
1
6

(u�µu+d�µd �2s�µs)
� �� �

I=0

(2.1)

can be split into an isovector part corresponding to the �-current and an isoscalar part. Performing
the Wick contractions one finds for the light and strange vector current

G�s(t) =
5
9

G�
con(t)+

1
9

Gs
con(t)+

1
9

G�s
disc(t) with G�

con(t) = 2G��(t) (2.2)
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Disconnected:

Computationaly very demanding

ChPT estimate / 10% [Della Morte, Juettner ’10 ]

Direct estimates from the lattice in progress [Guelpers et al. ’14 ]
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• Several other progress reports @ Lattice2015, Kobe

• Together with postdoc@IST,Lisbon [N. Cardoso]: setting up 
evaluation of disconnected on GPUs



Conclusions & outlook

• Lattice gives an independent theory prediction of hadronic contributions aμ


• HVP front: strange contribution under control, light still needs work 


• Phenomenologically - IB plays an important role in the th.-exp. discrepancy


• First attempt to extract the IB correction to the HVP from first principles


• Difficult task, but RM123 method should give good signal over noise ratio


• Other topics I am interested in: 


➡ Heavy quark physics from non-perturbative perspective


➡ Quantum simulations of gauge theories motivated by the sign problem at finite 

• Feel free to come and discuss any of these or sth. else further…


• And just one more thing …

µ
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