Muon g-2: leading hadronic contribution from the lattice

Marina Krstić Marinković

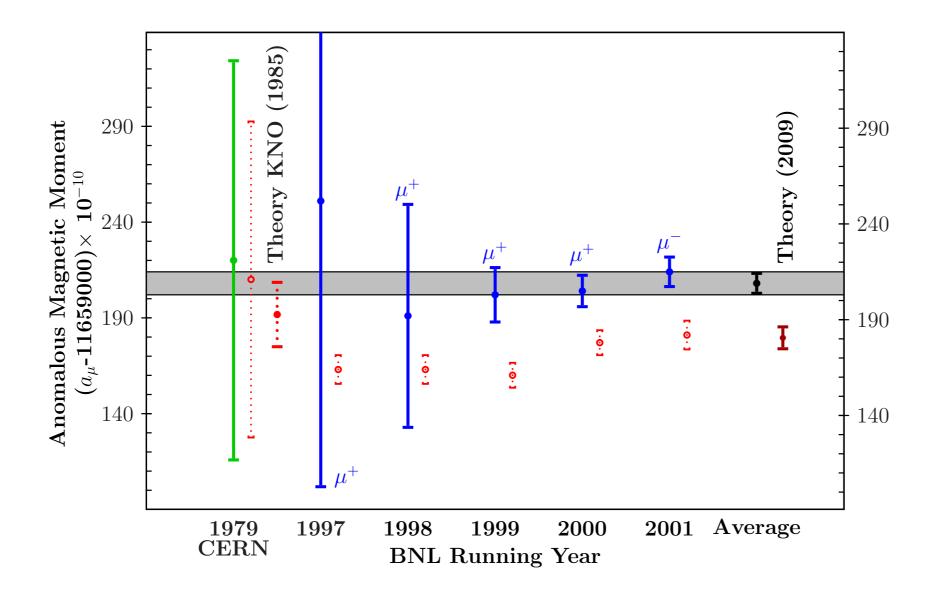
Before coming to CERN ...

- 2003-2009 BSc/MSc at University of Belgrade, Serbia
- 2009-2013 PhD at Humboldt University, Berlin, Germany
- 2012-2014 Postdoc at the University of Southampton, UK

My current interests

- Hadronic vacuum polarisation from the lattice
- Isospin breaking corrections, QED+QCD
- Heavy quark physics
- Quantum simulation of gauge theories

Before coming to CERN ...


- 2003-2009 BSc/MSc at University of Belgrade, Serbia
- 2009-2013 PhD at Humboldt University, Berlin, Germany
- 2012-2014 Postdoc at the University of Southampton, UK

My current interests

- Hadronic vacuum polarisation from the lattice
- Isospin breaking corrections, QED+QCD
- Heavy quark physics (Southampton+KEK+Tsukuba..., theoretical explorations)
- Quantum simulation of gauge theories (initial discussions ...)

a_{μ} as a stringent test of the SM

• Evolution of the (th - exp) tension [Jegerlehner, Nyffeler 0902.3360]

a_{μ} as a stringent test of the SM

•
$$a_{\mu}^{exp} = 11659208.0(6.3) \times 10^{-10}(0.54ppm)$$
 [BNL, 2006-2008]

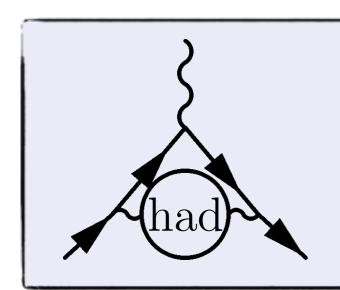
- Current theoretical and experimental estimates:
 - \rightarrow discrepancy: 2.9-3.6 stand. dev. discrepancy (e^+e^-, au data)
 - \rightarrow $a_{\mu}^{exp} a_{\mu}^{th,SM} = 287(63)(51) \times 10^{-11}$ [Jegerlehner, Nyffeler 0902.3360]
- New experiments (J-PARC, Fermilab E989) expected to perform 4x more precise measurement
- Improved precision of the theoretical estimates with dominating uncertainty required

a_{μ} as a stringent test of the SM

SM Contribution	$Value \pm Error (imes 10^{11})$	Ref
QED (5 loops)	116584718.951 ± 0.080	[Aoyama et al., 2012]
HVP LO	6923 ± 42	[Davier et al., 2011]
	6949 ± 43	[Hagiwara et al., 2011]
HVP NLO	-98.4 ± 0.7	[Hagiwara et al., 2011]
		[Kurz et al., 2014]
HVP NNLO	12.4 ± 0.1	[Kurz et al., 2014]
HLbL	105 ± 26	[Prades et al., 2009]
Weak (2 loops)	153.6 ± 1.0	[Gnendiger et al., 2013]
SM Tot (0.42 ppm)	116591802 ± 49	[Davier et al., 2011]
(0.43 ppm)	116591828 ± 50	[Hagiwara et al., 2011]
(0.51 ppm)	116591840 ± 59	[Aoyama et al., 2012]
Exp (0.54 ppm)	116592089 ± 63	[Bennett et al., 2006]
Diff $(Exp - SM)$	287 ± 80	[Davier et al., 2011]
	261 ± 78	[Hagiwara et al., 2011]
	249 ± 87	[Aoyama et al., 2012]

- Lattice provides *ab initio* setup for the computation of hadronic contribution(s)
- Completely independent from the current phenomenological determinations
- HVP leading order: largest uncertainty!
- HLbL next, very important to compute, requres QED

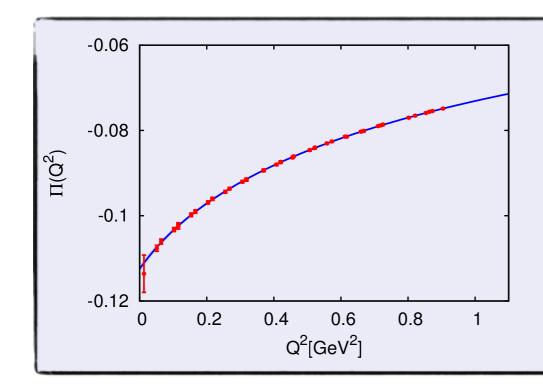
Hadronic contributions to a_{μ} from the lattice


- Computing hadronic vacuum polarisation(HVP) contribution as a part of RBC&UKQCD
- Computing leading isospin breaking correction (LIBE) to HVP
- Prospects: disconnected contribution, improving LIBE to HVP —> QED+QCD

The RBC & UKQCD collaborations

BNL and RBRC	Luchang Jin Bob Mawhinney	<u>Plymouth University</u>
Tomomi Ishikawa Taku Izubuchi	Greg McGlynn David Murphy	Nicolas Garron
Chulwoo Jung Christoph Lehner	Daiqian Zhang	University of Southampton
Meifeng Lin Taichi Kawanai	<u>University of Connecticut</u>	Jonathan Flynn
Christopher Kelly Shigemi Ohta (KEK)	Tom Blum	Tadeusz Janowski Andreas Juettner
Amarjit Soni Sergey Syritsyn	Edinburgh University	Andrew Lawson Edwin Lizarazo
<u>CERN</u>	Peter Boyle Luigi Del Debbio	Antonin Portelli Chris Sachrajda
Marina Marinkovic	Julien Frison Richard Kenway Ava Khamseh	Francesco Sanfilippo Matthew Spraggs Tobias Tsang
<u>Columbia University</u>	Brian Pendleton	100100 100110
Ziyuan Bai	Oliver Witzel Azusa Yamaguchi	<u>York University (Toronto)</u>
Norman Christ Xu Feng		Renwick Hudspith

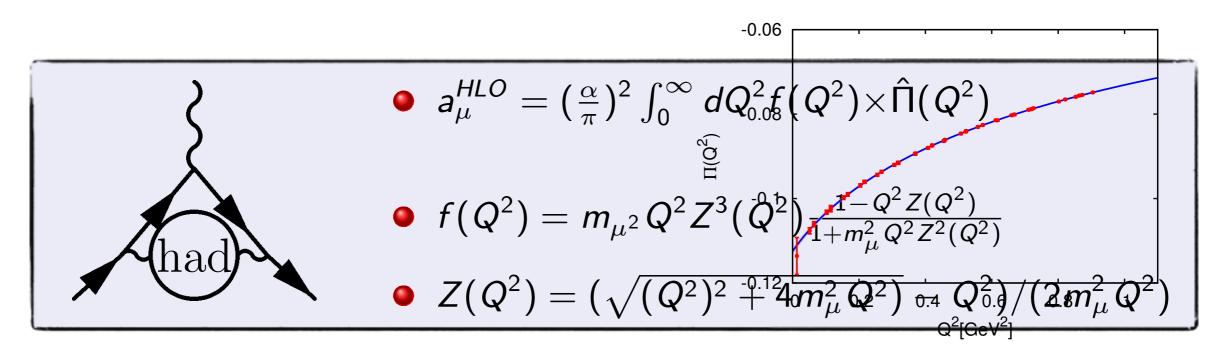
Hadronic vacuum polarisation

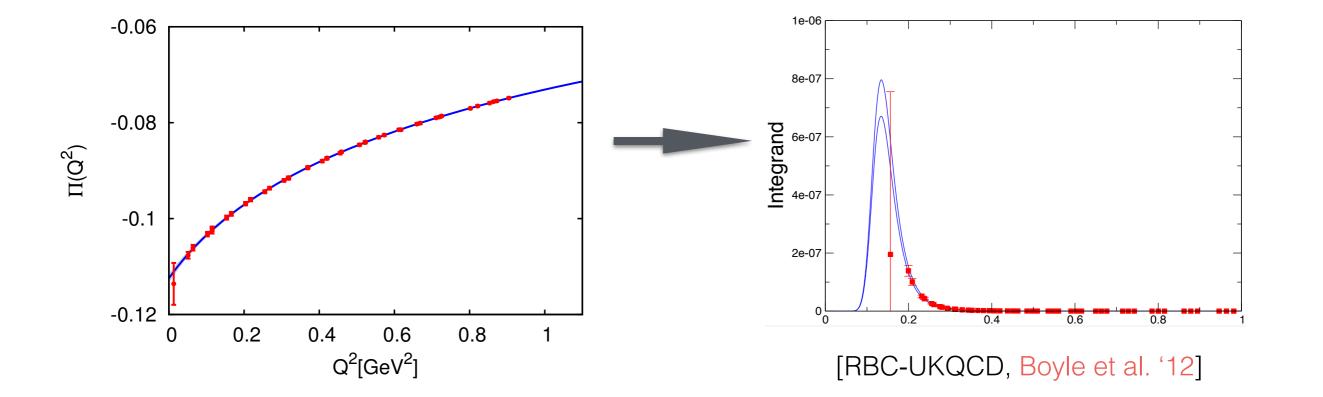

Can be computed in Euclidean space-time [Blum, 2003; Lautrup et al., 1971]

•
$$a_{\mu}^{HLO} = (\frac{\alpha}{\pi})^2 \int_0^{\infty} dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$$

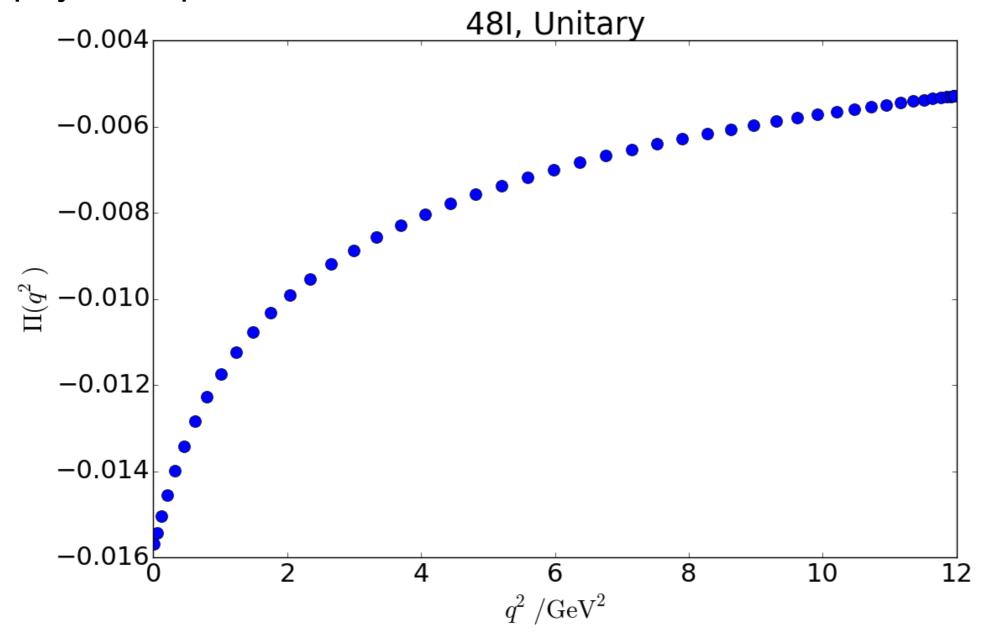
•
$$f(Q^2) = m_{\mu^2} Q^2 Z^3 (Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_{\mu}^2 Q^2 Z^2(Q^2)}$$

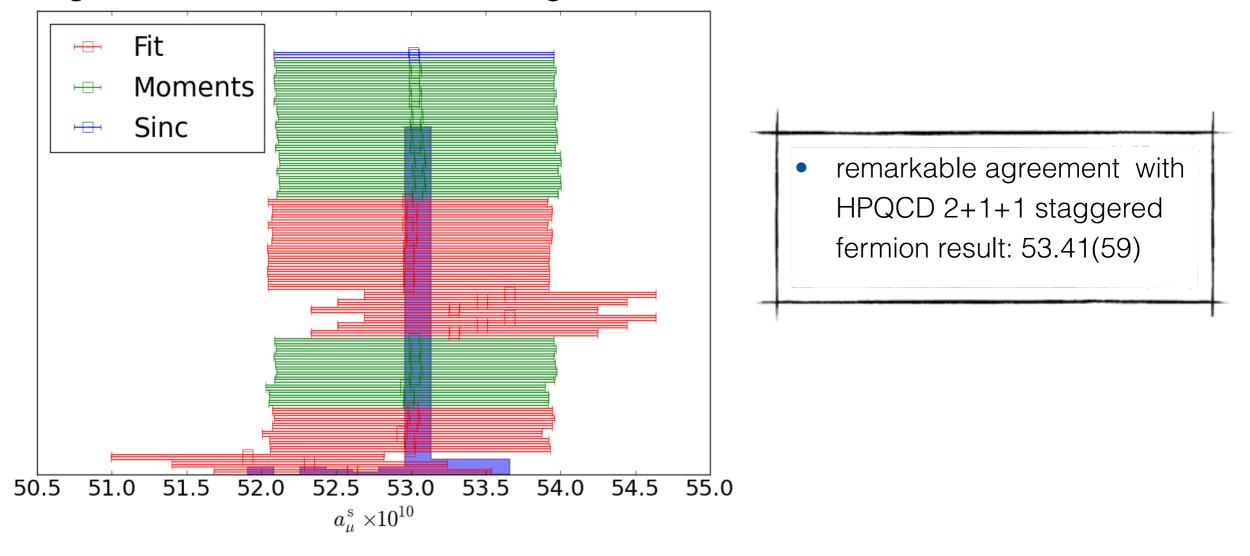
•
$$Z(Q^2) = (\sqrt{(Q^2)^2 + 4m_\mu^2 Q^2}) - Q^2)/(2m_\mu^2 Q^2)$$




$$\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0)$$

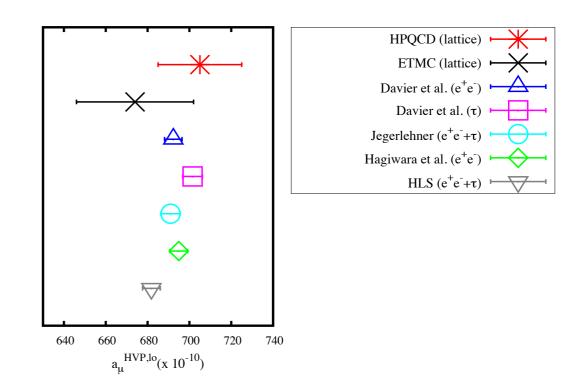
Hadronic vacuum pc


Can be computed in Euclidean space-time [Blum, 2003; Lautrup et al., 1971]


Strange HVP: Matt Spraggs's talk at Lattice 2015 [RBC/UKQCD 2015]

 Strange contribution to HVP, 2+1 flavor Möbius DWF, physical quark mass ensemble

Strange HVP: Matt Spraggs's talk at Lattice 2015 [RBC/UKQCD 2015]


Histogram of results from various strategies. Results insensitive

Light HVP (u,d): needs quite a bit more work ...

Computing IB correction to the HVP

- Once the aimed precision for the connected HVP from the lattice is achieved (in the isosymmetric theory) —> the effects we neglected so far might become important:
 - disconnected contribution,
 - isospin breaking corrections,
 - charm in the sea, ...
- In the phenomenological determination of a_{μ}^{had} model calculation of [Jegerlehner,Szafron '11]
 - ightharpoonup correctly applied IB correction reduced the discrepancy between e^+e^- and τ estim.

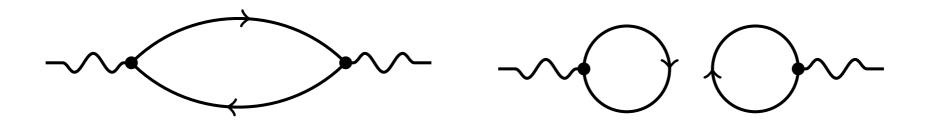
[Plot: B. Chakraborty, LATTICE 2015]

 It would be good to have a model independent (non-perturbative) estimate of IB effects: lattice QCD+QED

Computing IB correction to the HVP

$$\Delta O = \left\{ e^2 \frac{\partial}{\partial e^2} + \left[g_s^2 - (g_s^0)^2 \right] \frac{\partial}{\partial g_s^2} + \left[m_f - m_f^0 \right] \frac{\partial}{\partial m_f} + \left[m_f^{cr} - m_0^{cr} \right] \frac{\partial}{\partial m_f^{cr}} \right\} O$$

[Gasser, Rusetsky, Scimemi '03, RM123 '13]


- RM123 method [arXiv:1303.4896] for computing leading isospin breaking corrections (LIBE)
 - Expanding an observable (in the isospin broken theory) with respect to the isosymmetric
 QCD result
- For a start: applying it to the connected part of the HVP
- Main advantage w. respect to simulating QED+QCD:
 - ightharpoonup Diagrams obtained individually (before multiplying with $O(\alpha_{em})$, $O(m_u m_d)$ coeff.)
 - lacktriangle No extrapolation in α_{em}
- Main disadvantage: one needs to compute many diagrams, mainly 3pt and 4pt functions
 - Can be overcome with careful organisations of the computation [DD-SCOR code, N.Tantalo]
 - Code base for lattice QCD with isospin breaking corrections

Prospects I: conceptual improvements

- Reducing finite volume effects they are expected to be main source of systematics
- Currently: global zero mode subtracted: $A_{\mu}(k=0)\equiv 0$
 - ightharpoonup Violates reflection positivity and does not have a well defined $T
 ightharpoonup \infty$ limit [1406.4088]
- Removing the zero mode of the field on each time slice separately [Hayakawa, Uno '08]
 - → this explicitly violates the hypercubic symmetry of the lattice -> no trace of the violation in the inf. vol limit [1406.4088]
- Charged particles in QED/QED+QCD with C* BCs —> FV effects for masses even smaller
 - [Alberto, Agostino, ... arXiv:1509.01636]
- Eager to try this out for LIBE of HVP as well
- Getting the disconnected contributions (beyond el-quenched)

Prospects II: Disconnected contribution

Connected and disconnected contribution to the HVP

- Disconnected:
 - Computationaly very demanding
 - ullet ChPT estimate $\propto 10\%$ [Della Morte, Juettner '10]
 - Direct estimates from the lattice in progress [Guelpers et al. '14]
 - Several other progress reports @ Lattice2015, Kobe
 - Together with postdoc@IST,Lisbon [N. Cardoso]: setting up evaluation of disconnected on GPUs

Conclusions & outlook

- Lattice gives an independent theory prediction of hadronic contributions aµ
- HVP front: strange contribution under control, light still needs work
- Phenomenologically IB plays an important role in the th.-exp. discrepancy
- First attempt to extract the IB correction to the HVP from first principles
- Difficult task, but RM123 method should give good signal over noise ratio
- Other topics I am interested in:
 - → Heavy quark physics from non-perturbative perspective
 - ightharpoonup Quantum simulations of gauge theories motivated by the sign problem at finite μ
- Feel free to come and discuss any of these or sth. else further...
- And just one more thing ...

Excited QCD 2016

Costa da Caparica, Lisbon, Portugal 6-12 March 2016

QCD at high temperatures & finite densities

- · heavy-ion collisions, jets, diffraction, hadronisation
- quark-gluon plasma
- holography, colour-glass condensate
- compact stars, applications to astrophysics

QCD at low energies

- excited hadrons
- new resonances
- glueballs, multiquarks

More information

https://indico.cern.ch/event/453434/

excitedqcd@th.physik.uni-frankfurt.de

Organising Committee

Pedro Bicudo, IST, Lisbon Francesco Giacosa, UJK, Kielce Jelena Jovicevic, TRIUMF Robert Kaminski, IJF PAN, Krakow Marina Marinkovic, CERN