Lattice field theory

Liam Keegan

November 2015

CERN Theory Group Retreat, Les Houches.

Large N Twisted Volume Reduction

Lattice field theory:

- \hat{L}^{4} points, lattice spacing a
- Physical volume $L^{4}=(\hat{L} a)^{4}$
- UV cut-off: $1 / a$
- IR cut-off: $1 / L$

Twisted reduction: $\hat{L} \rightarrow \sqrt{N}$

- Single site lattice, lattice spacing a
- Physical volume $L^{4}=(\sqrt{N} a)^{4}$
- UV cut-off: $1 / a$
- IR cut-off: $1 / \sqrt{N} a$

Running Coupling

[Margarita García Peréz, Antonio González-Arroyo, Masanori Okawa]

- $\operatorname{SU}(N=\infty)$ running coupling from 1^{4} lattice
- N from 64 to 324
- Different
discretizations consistent with each other
- Agrees with 2-loop perturbation theory

Running Coupling

- $\operatorname{SU}(N=\infty)$ running coupling from 1^{4} lattice
- N from 64 to 324
- Different discretizations consistent with each other
- Agrees with 2-loop perturbation theory

Walking/Conformal Gauge Theories

- Perturbative phase diagram of SU(N) gauge theories with N_{f} fermions
- Shaded region shows conformal window
- Can be very different to QCD

Mass Anomalous Dimension at IRFP γ_{*}

- $\mathrm{SU}(\mathrm{N})+2$ adjoint Dirac fermions
- γ_{*} determined from fit to the Dirac mode number
- data points: SU(N) with $N=289$ (single site)
- dotted line: SU(2) (32^{4} lattice)
[Patella 1204.4432]

Simple model to investigate systematics

- Massive $n_{f}=2$ Schwinger Model: 2d QED + 2 Dirac fermions
- Analytic predictions available in UV and IR limits

Simple model to investigate systematics

- Massive $n_{f}=2$ Schwinger Model: 2d QED +2 Dirac fermions
- Analytic predictions available in UV and IR limits

PROMENADE ROMANTIQUE

SCHUMANN

SYMPHONIE N 4 EN RÉ MINEUR
TCHAÏKOVSKI
VARIATIONS SUR UN THĖME ROCOCO LE LAC DES CYGNES SUITE DU BALLET N' 2

ORCHESTRE DES NATIONS UNIES
ANTOINE MARGUIER direction

CAMILLE THOMAS VIOLONCELIE

29 novembre 2015 | 17h Victoria Hall, Genève

