Staff at CERN-TH since June 2011, on leave from CNRS, Paris
Staff at CERN-TH since June 2011, on leave from CNRS, Paris
Formal / mathematical aspects of string theory
Staff at CERN-TH since June 2011, on leave from CNRS, Paris

Formal / mathematical aspects of string theory
 - String perturbation theory, instanton calculus, dualities...

Exact results in SUSY gauge theories in various dimensions

Math applications: automorphic forms, algebraic geometry...
Staff at CERN-TH since June 2011, on leave from CNRS, Paris
Formal / mathematical aspects of string theory
 - String perturbation theory, instanton calculus, dualities...
 - Black hole microstate counting, wall-crossing...
Staff at CERN-TH since June 2011, on leave from CNRS, Paris

Formal / mathematical aspects of string theory

- String perturbation theory, instanton calculus, dualities...
- Black hole microstate counting, wall-crossing...
- Exact results in SUSY gauge theories in various dimensions
Staff at CERN-TH since June 2011, on leave from CNRS, Paris

Formal / mathematical aspects of string theory

- String perturbation theory, instanton calculus, dualities...
- Black hole microstate counting, wall-crossing...
- Exact results in SUSY gauge theories in various dimensions
- Math applications: automorphic forms, algebraic geometry...
One of the virtues of string theory is that only one diagram is needed at each loop order.

\[\text{Diagram: } \quad + \quad + \quad + \quad + \ldots \]
One of the virtues of string theory is that only one diagram is needed at each loop order.

The down side is that the integral over the moduli space of curves of (super) Riemann surfaces of genus h is almost impossible to compute!
For $h \leq 3$, the moduli space is a fundamental domain \mathcal{F}_h in the Siegel upper-half plane \mathcal{H}_h. For $h = 1$, still relatively tame:
For $h \leq 3$, the moduli space is a fundamental domain \mathcal{F}_h in the Siegel upper-half plane \mathcal{H}_h. For $h = 1$, still relatively tame:

In collaboration with C. Angelantonj, I. Florakis (2011-15), we have developed methods to reduce a large class of one-loop modular integrals to ordinary Schwinger-type integrals.
For $h \leq 3$, the moduli space is a fundamental domain \mathcal{F}_h in the Siegel upper-half plane \mathcal{H}_h. For $h = 1$, still relatively tame:

In collaboration with C. Angelantonj, I. Florakis (2011-15), we have developed methods to reduce a large class of one-loop modular integrals to ordinary Schwinger-type integrals.

The trick is to represent the integrand as sum over images under the modular group, and unfold the integration domain against the sum.
With I. Florakis, I am currently trying to extend this method to NNLO \((h = 2)\) and N3LO \((h = 3)\).
With I. Florakis, I am currently trying to extend this method to NNLO ($h = 2$) and N3LO ($h = 3$).

One significant complication is that the integral typically diverges when the Riemann surfaces becomes degenerate, i.e. acquires a node.
Higher loop modular integrals

- With I. Florakis, I am currently trying to extend this method to NNLO ($h = 2$) and N3LO ($h = 3$).
- One significant complication is that the integral typically diverges when the Riemann surfaces becomes degenerate, i.e. acquires a node.
- These divergences reflect the infrared divergences from massless supergravity states.
In fact, all supergravity Feynman diagrams emerge from degenerations of Riemann surfaces:

In mathematics, these decorated Feynman diagrams are known as tropical Riemann surfaces.
In fact, all supergravity Feynman diagrams emerge from degenerations of Riemann surfaces:

In mathematics, these decorated Feynman diagrams are known as tropical Riemann surfaces.
By introducing a suitable cut-off, we managed to extend the unfolding method to a class of two-loop modular integrals where the integrand is regular near the separating degeneration and grows at most polynomially near the non-separating degeneration.
The unfolding method at higher genus

By introducing a suitable cut-off, we managed to extend the unfolding method to a class of two-loop modular integrals where the integrand is regular near the separating degeneration and grows at most polynomially near the non-separating degeneration.

This includes e.g. the two-loop correction to $D^4 R^4$ coupling in type II string theory compactified on a torus, and establishes relations with Eisenstein series which Obers and I had conjectured in 1999.
By introducing a suitable cut-off, we managed to extend the unfolding method to a class of two-loop modular integrals where the integrand is regular near the separating degeneration and grows at most polynomially near the non-separating degeneration.

This includes e.g. the two-loop correction to $D^4 R^4$ coupling in type II string theory compactified on a torus, and establishes relations with Eisenstein series which Obers and I had conjectured in 1999.

Higher derivative couplings are more singular and require more sophisticated treatment. In fact, the study of the $D^6 R^4$ coupling has led to a new representation of the Kawazumi-Zhang invariant for genus two curves, which seems to baffle mathematicians...