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Research Interests

Effective Field Theories of the Standard Model at high and low energies :

Soft Collinear Effective Theory for hard QCD processes characterized by the 
presence of hadronic jets: factorization and resummation of large logarithms 
induced by restrictions on initial- and/or final-state radiation, to improve 
state-of-the-art calculations

Chiral effective field theory for calculations of strong interaction effects at low 
energies (below 1 GeV): complementary information to lattice QCD



Jet physics: fragmentation

Novel formalism to describe fragmentation of a parton into a hadron inside an 
identified jet (MP, Stewart 2010; Jain, MP, Waalewijn 2011, 2012): enables study 
of correlations between kinematic cuts and the fragmentation variable, and leads 
to complementary information on fragmentation functions from LHC data

Novel framework to perform analytic QCD calculations for track-based 
observables, i.e. depending on kinematics of charged particles alone 
(Chang, MP, Thaler, Waalewijn 2013). 
At LHC tracking info used to improve jet measurements, study jet substructure 
and mitigate pileup. So far, theoretical studies rely on Monte Carlo event 
generators only.
In our formalism hadronization effects are encoded in universal track 
functions; factorization theorems enable systematically improvable QCD 
calculations with reliable theory uncertainties.
Goal: apply this framework to observables used by experimental collaborations, 
e.g. track N-subjettiness.



Jet physics: multidifferential resummation

Double differential cross sections where both observables require resummations 
(MP, Waalewijn, Zeune 2015). Important to investigate correlations 

jet cross sections: LHC analyses typically involve multiple cuts

jet substructure: ratio observables are common. Example: 

! So far resummation mostly restricted to single variables 
[threshold+transverse momentum: Li; Laenen, Sterman, Vogelsang; …] 

! LHC analyses involve multiple cuts → capture correlations 

! Ratio observables common in jet substructure 
N-subjettiness, energy correlation functions, planar flow, … 

! Toy example: ratio of two angularities

Motivation for multi-differential resummation
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! Ratio                  is not IR safe 
[Soyez, Salam, Kim, Dutta, Cacciari] 

! IR region is Sudakov suppressed [Larkoski, Thaler] 
Requires simultaneous resummation of  

Ratio observables are Sudakov safe

r = eα/eβ
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• Definition of angularities:

• Phase space for the measurement of two 
angularities     and     between: 
 

Boundary B1: 
(from jet radius requirement) 

 

Boundary B2: 
(from energy conservation) 

Measuring two angularities on one jet
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At the phase-space boundaries different EFTs: we derived factorization formulae 
needed to achieve resummations in the bulk and provide an interpolation. Focus on: 

Multiple angularity measurement on the same jet at NLL 

Isolated Drell-Yan with a global veto on hard jets and measured transverse 
momentum of the vector boson (relations between fully unintegrated and 
standard pdfs, and various soft functions in different region of phase space)



Hadronic light-by-light scattering 

Limiting factor in the accuracy of SM predictions for                    is control over 
hadronic contributions, responsible for most of the theory uncertainty 

aµ = (g − 2)µ

Hadronic vacuum polarization can be systematically improved: unitarity and 
analyticity relate it directly to

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Status of (g − 2)µ Approaches to HLbL

Hadronic light-by-light: irreducible uncertainty?
! Hadronic contributions responsible for most of the theory
uncertainty

! Hadronic vacuum polarization (HVP) can be systematically
improved

! basic principles: unitarity and analyticity
! direct relation to experiment: total hadronic cross section

σtot(e+e− → γ∗ → hadrons)
! dedicated e+e− program (BaBar, Belle, BESIII, CMD3,
KLOE2, SND)
(but going much below 1% is hard – dealing with radiative corrections poses nontrivial problems)

a reliable uncertainty estimate is still an open issue

1 Introduction

Hadronic light-by-light (HLbL) scattering

• up to now only model calculations

• uncertainty estimate based rather

on consensus than on a systematic

method

• lattice QCD making progress, but

not yet competitive

• will dominate theory error in a few

years
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Hadronic light-by-light (HLbL) is more problematic. 
Only model calculations have been performed so far 
and they are characterized by large uncertainties in 
the individual contributions and discrepancies

How to reduce model dependence ? Recent strategies for an improved calculation :

lattice QCD 

dispersion theory to make the evaluation as data driven as possible



Hadronic light-by-light scattering 

The hadronic light-by-light tensor

Πµνλσ(q1, q2, q3) = −i

�
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has a very complex analytic structure: approximations are required. We order the 
contributions according to the mass of intermediate states: the lightest states are 
expected to be the most important (in agreement with model calculations).

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ

one-pion intermediate state:

+ Πbox

µνλσ + Π̄µνλσ + . . .
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(Colangelo, Hoferichter, MP, Stoffer 2013, 2014, 2015)

We therefore split aμHLbL into: ``pion” pole term (one-pion intermediate state), box 
topologies (2-pion intermediate states in direct- and crossed-channel), ππ 
rescattering contribution (2 pion intermediate state only in direct channel), and 
higher-mass intermediate states (so far neglected).
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Input for our dispersion relations at fixed photon virtualities are singly- and 
doubly-virtual pion transition form factors, pion vector form factors, and helicity 
partial waves for             .
Ongoing work: dispersive reconstruction of transition form factors and helicity 
partial waves (constraints from chiral EFT), numerical analysis.

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

(Colangelo, Hoferichter, MP, Stoffer 2013, 2014, 2015)


