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Main interest: strongly coupled QFTs

key question:  
What is the computational complexity 
of “solving” a strongly coupled QFT?

To solve = to be able to make quantitatively accurate predictions 
(spectrum, scattering amplitudes, etc)



Examples of strongly coupled CFTs relevant for the real world

Particle physics:    QCD

Statistical and condensed matter physics:  ∞ many examples

helium near superfluid transition 

ferromagnets near Curie temperature

high Tc superconductors



Gapped vs gapless theories

Some strongly coupled theories at low energies develop a mass gap, 
others remain massless and yet strongly interacting (CFTs)

CFTs can be solved/constrained using the “conformal bootstrap” approach

CFTs are particularly relevant for the theory of phase transitions,
and also for some ideas about BSM

actively developed at CERN

Alessandro Vichi, Miguel Paulos, myself
as well as former fellows Sheer El-Showk, Balt van Rees



comparison to Monte Carlo
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Figure 3: Comparison between the allowed region for the 3d Ising CFT using SDPB with
Λ = 43 (blue) and Monte Carlo determinations of critical exponents (dashed rectangle) [67].
The size of the Monte Carlo rectangle is set by statistical and systematic errors associated
with the simulation. By contrast, the blue region is a rigorous bound with sharp edges.

different algorithms, like Second Order Conic Programming (SOCP), cutting plane methods,
or constrained nonlinear optimization may also be applicable.

The revival initiated in [1] is still young, and the technology (both analytical and
numerical) is evolving rapidly. Current techniques are likely not maximally efficient, and it
will be important to consider other methods, from new algorithms and optimization tools
to conceptually different approaches. We are optimistic that much more will be possible.
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Dimensions of the leading operators in the 3d Ising model:

Δσ=0.518151(6), Δε=1.41264(6)

from bootstrap (rigorous error bars)



What about gapped strongly coupled theories?

Lattice Monte Carlo simulations are one option.

(like low-energy QCD)

There is a whole array of alternative methods motivated by
quantum condensed matter physics:

(originates from statistical mechanics)

Density Matrix Renormalization Group,
Matrix Product States,

Entanglement Renormalization…
(typically limited to d=2)

I’ve been exploring one method which belongs to the same group but
has a chance to be extendable to d>2 



Hamiltonian Truncation
is a variant of Rayleigh-Ritz method of QM applied to QFT

sometimes we say that QCD vacuum is filled with quark-antiquark pairs
forming a condensate

similarly we say that a meson is a q-qbar valence pair with an admixture
of an arbitrary number of sea q-qbar pairs:

Hamiltonian truncation is trying to make this quantitatively precise.

Works for simple theories (like scalar phi^4 in d=2 and slightly above)

Challenges: increase d, extend to gauge theories


