

Research Interests

Florian Staub

CERN Theory Group Retreat 2015

About me

- Born at the edge of Bavaria
- Positions:
 - -2011: PhD & PD in Würzburg
 - 2011-2014: PD in Bonn
 - 2014- : Fellow at CERN

About me

- Born at the edge of Bavaria
- Positions:
 - -2011: PhD & PD in Würzburg
 - 2011-2014: PD in Bonn
 - 2014- : Fellow at CERN
- Author of HEP tools:
 - SARAH
 - SPheno
 - Vevacious
 - ▶ ...
- Theory Convener of LHCHXSWGNMSSM

Main research topics

1. Two-loop Higgs mass calculations

2. Phenomenology of non-minimal SUSY models

The Higgs mass has become a precision observable ... but

The Higgs mass has become a precision observable ... but

Theoretical uncertainty

- Already in the MSSM the theoretical uncertainty for moderate SUSY masses is estimated to be O(3 GeV) based on:
 - Missing two-loop electroweak corrections
 - Missing three-loop corrections

The Higgs mass has become a precision observable ... but

Theoretical uncertainty

- Already in the MSSM the theoretical uncertainty for moderate SUSY masses is estimated to be O(3 GeV) based on:
 - Missing two-loop electroweak corrections
 - Missing three-loop corrections
- Even this is for some scenarios too optimistic (see later)
- ► For any other SUSY model, the situation is in general worse

The Higgs mass has become a precision observable ... but

Theoretical uncertainty

- Already in the MSSM the theoretical uncertainty for moderate SUSY masses is estimated to be O(3 GeV) based on:
 - Missing two-loop electroweak corrections
 - Missing three-loop corrections

Even this is for some scenarios too entimistic (see later)								
ł	Higgs mass prediction of public NMSSM codes							
ſ		TP1	TP2	TP3	TP4	TP5	TP6	
	FlexibleSUSY	123.55	122.83	126.58	127.62	125.08	126.46	
	NMSSMCalc	120.34	118.57	124.86	126.37	123.14	123.45	
	NMSSMTOOLS	123.52	121.83	127.28	127.30	126.95	126.63	
	SOFTSUSY	123.84	123.08	126.59	127.52	125.12	126.67	
	SPHENO	124.84	124.74	126.77	126.62	125.61	131.29	

The Higgs mass has become a precision observable ... but

Theoretical uncertainty

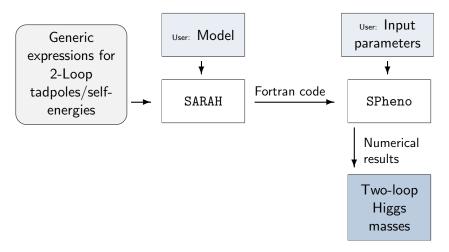
- Already in the MSSM the theoretical uncertainty for moderate SUSY masses is estimated to be O(3 GeV) based on:
 - Missing two-loop electroweak corrections
 - Missing three-loop corrections
- Even this is for some scenarios too optimistic (see later)
- ► For any other SUSY model, the situation is in general worse

Common approaches to get Higgs masses in other models:

- One-loop eff. pot. calculation in a given model
- Take MSSM results & forget about peculiarities of new model
- \rightarrow both can suffer from huge uncertainties (10 GeV and more)

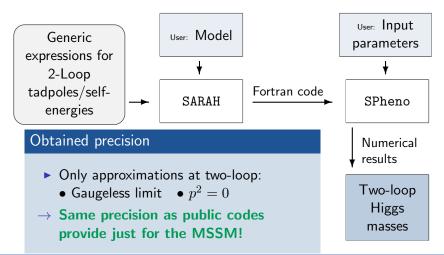
The Higgs mass has become a precision observable ... but

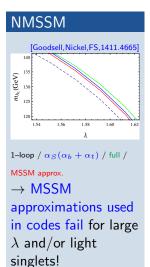
Theoretical uncertainty


- Already in the MSSM the theoretical uncertain SUSY masses is estimated to be O(3 GeV)
 - Missing two-loop electroweak corr
- Even this is for some scen
- ► For any other SUSY

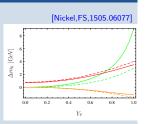
approved to be able to use able to to be able to to to be able to to be able to to be able to to be able Common appr Ope b

Automatisation of two-loop Higgs mass calculations


[Goodsell,Nickel,FS,1411.0675],[Goodsell,Nickel,FS,1503.03098]


Automatisation of two-loop Higgs mass calculations

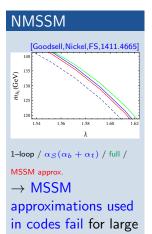
[Goodsell,Nickel,FS,1411.0675],[Goodsell,Nickel,FS,1503.03098]

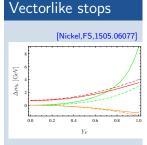


Some results

Vectorlike stops

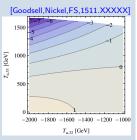
shift by momentum dependence,


thresholds, two-loop


 \rightarrow different effects beyond eff. pot. approximation are important!

Florian Staub

Some results



shift by momentum dependence, thresholds, two-loop

 \rightarrow different effects beyond eff. pot. approximation are important!

MSSM beyond MFV

 \rightarrow MSSM uncertainty quickly increases for large $\tilde{t}-\tilde{c}$ mixing

singlets!

 λ and/or light

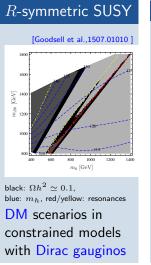
Future extensions

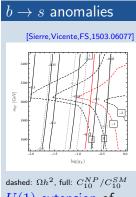
Short (?) term

- support of CP violation:
 - \rightarrow under validation at the moment: release soon! $\textcircled{\sc 0}$
- including momentum dependence:
 - \rightarrow linking TSIL possible, but very slow \circledast

Future extensions

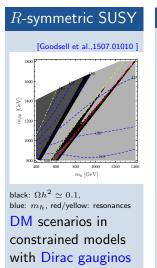
Short (?) term

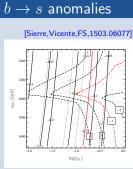

- support of CP violation:
 - \rightarrow under validation at the moment: release soon! $\textcircled{\sc 0}$
- including momentum dependence:
 - \rightarrow linking TSIL possible, but very slow \circledast


(Very) long term

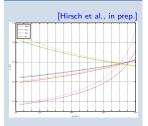
- Completing two-loop
- Dominant three-loop
- Resummation of large logs

Some recent and current phenomenology studies





assigned: U_{10}^{r} , full: C_{10}^{r} , C_{10}^{r} , C_{10}^{r} , U(1) extension of the SM to explain flavour anomalies and DM.


Some recent and current phenomenology studies

dashed: Ωh^2 , full: C_{10}^{NP}/C_{10}^{SM} U(1) extension of the SM to explain flavour anomalies and DM.

Left-right models

1-loop (dashed), 2-loop (full)

Phenomenology of a constrained SUSY LR model with gauge coupling unification.