
(LHC) Controls – an OP
perspective

K. Fuchsberger

on behalf of the LHC-OP team

Many, many thanks to the whole OP team for the input!

OP Perspective on Controls

Users view

Developers View

Summary

Content

Users view

Developers View

Summary

Content

First of all ...

We have a very good control system!!!!
• Very stable
• All operational scenarios managable (e.g. Ramp & squeeze)
• Big cleanup and a lot of improvements done of APIs during LS1.

So, ... Do we have to change at all?
• Avoiding Mistakes  Increase Availability (cf Andreas

Presentation)
• Evolve (carefully!)  Be prepared!

• The world around us changes (e.g. processors, java, …)
• E.g. Future accelerators

• Be Compatible with the 21st Century ;-)

What we did not ask for ...

Breaking API changes
• LSA Refactoring
• Logging Service API (x2)
• Changes in many FESA classes

We understand that such changes might be necessary..

Transparency & Communication (in advance)

 See Marines Presentation

What we asked for (2010/11)...

https://drive.google.com/open?id=1AOXREGR6X7VmoizAldJFS6gPCtACeTP2Mmo6P-o9AUA

 We asked for too much!?

https://drive.google.com/open?id=1AOXREGR6X7VmoizAldJFS6gPCtACeTP2Mmo6P-o9AUA

What does OP want?

What do you consider as the …
• … most important features/properties/components that an ideal control

system should have?
(Long term)

• … most important improvements that should be made to the available
tools?

• … most important issues that should have been fixed as soon as possible?

 Not easy to find out what we want 

Finding Priorities

15 Votes in total

50%

Importance

#
V

o
te

s

Top 5

Top 5 of LHC-OP‘s most wanted improvements

5 – Improve Window Management on Consoles

• Rationalize the space
• Many overlapping windows
• ‘Perspectives’ per activity: e.g. Injection, Ramp, Lossmaps, Powering
• Beam mode / State machine deciding what gets displayed and where?
• Different window manager?
• Autostart of predefined set of applications on consoles (e.g. after a

reboot)
• Shortcuts (e.g. new logbook entry, search for an application)

4 - Easily usable tool to move collimators

• Currently: complicated acrobatics of making some BP
resident plus pressing the right combinations of
buttons in equip state.

• Certain Scenarios
• Move all to parking
• Symmetrize TCTs

• Nice display where to see the collimators (probably
w.r.t. the beam)

3 – Improved Filling Diagnostics

• A lot of time lost
• See at one glance why the beam did not come (Missing Fixed display)
• E.g. Why did the CBCM reject the request?
• Show in advance what has to be done before to request an injection.

•  Availability (Delphine)

2 – QPS/PIC/Equip State

• PIC permit loss-> immediately display root cause
• PM knows it - can this be faster?
• Replacement for QPS macros
• Better integration in other controls system

• Simple overview
• Dig down in case of problems
• Easy tool for Circuit (+QPS) resets

 See also: Mirkos presentation

1 – Improved Automation/Sequencer/Scripting

Execution:
• (Automated) Parallelism
• Better overview (several sequences running)
• Small things (e.g. Quirky Windows behaviour, Better error presentation)

Editing:
• Long time/chain from idea to operation

(every change in a task needs a sequencer release)
• Tools that make it easier to refactor between different layers (Sequence <-> Task).

Scripting (More flexible (and more dynamic) way to create
scripts/macros/sequences). E.g. for
• Easy way to formulate commissioning tests
• MDs

1 – Improved Automation II

Settings vs. Sequences
• Clear separation between settings and sequence
 Avoid hardcoded values in sequence (devices, contexts, values…)

• Templates/Operational Scenarios (certain modes of operation (e.g. Proton
Physics, Lossmaps, VdM scans)

• Avoid e.g. different sequences for different particle types.
(Now Copies with slight changes)

• Clearly see the discrepancies when something is wrong.

https://docs.google.com/spreadsheets/d/1aLT2UMOGL9T4o2hQSj1VHOH0CVQmZvGr5DraD0u9Sgo/pubchart?oid=751201601&format=interactive

Just for the sake of completeness …

 To be refined

in January

https://docs.google.com/spreadsheets/d/1aLT2UMOGL9T4o2hQSj1VHOH0CVQmZvGr5DraD0u9Sgo/pubchart?oid=751201601&format=interactive

Users view

Developers View

Summary

Content

The uppermost layer

Courtesy: D. Valuch

Application developers perspective

LSA

CCDB

Equipment devices

….
Logging

Seq

The layered control system …

• Domain Driven Design

• Ease testing

• Making writing Applications easy!

LSA

(Settings management)

An Application

LSA DB Equipment

CALS

Something missing here?“Physics Layer”

Tune tune = get(HORIZONTAL, TUNE).of(LHC);

on(HORIZONTAL, TUNE).of(LHC).subscribe((tune) -> System.out.println(tune));

OP SW developers perspective

LSA

CCDB

Equipment devices

….

Logging

Seq

FESA

JAPC

RDA

Who has the global view?

Global long term vision

Based on some principles e.g.

• Intuitive

• Consistent

• Simple on top, easy to dig

down.

• Built to be tested

• Built to grow

• Right dose of Automation

• ...

Do not be afraid of validation testing …. ?
Procedure for software tests during operational periods:
Option A - Do not test
Option B - Be brave and do the following:
1. Check that you are connected to LSA NEXT and your test device
2. Open LHC Page 1
3. Check that you are really connected to LSA NEXT and the test device

(better restart the application once more, just to be sure)
4. Close your eyes and and mumble the mantra: “No worries, RBAC will save me if I do

something wrong!”.
5. press the button …
6. Open your eyes and check on page 1 if the beam is still in …
7. (optional) – if the beam was dumped, call the CCC and apologize

 Would appreciate a comforting development and testing

environment outside the TN 

LHC OP Software - Status

• ~500.000 lines of code
(800.000 lines in total)

• 13.6 manyears of
technical dept

• 6+2(SPS) people writing
software

→ 8.4 minutes of tech dept
per line of code!!!!!

[d
]

How come?

“Write!” “Write!” “Write!”

…

Project A Project B Project C Project D

Potential Incoming

• ~100.000 Lines of code
(20% of actual codebase)
(~160.000 lines in total)

• ~2.5 man-years of tech
debt

•  ~ 8 min/LoC

• ~2 students projects + 1
external SW stack.

• Lack of continuity

How we are trying to tackle this problem

Project A

Project B

Project C

Project D

Works together on

Team

• + Knowledge exchange

• better SW!

• + Focus (more done)

• + More fun!!

Because of shiftwork, difficult to ensure

• … continuous progress

• … continuous supervision

• … continuous support

Collaborate more with other sections

Project A

Project B

Project C

Project D

Works together on

Team

• Approach was already successfully implemented

for development of FB-testing framework.

• Some iterations “in preparation” together with

TE-MPE for Jan/Feb

• CO-APS is willing to give it a try together with us

next year (“good old LSA collaboration” ;-)

More layers involved

Team up with other sections

Users view

Developers View

Summary

Content

Summary

Everything working well! Time to evolve (carefully)!

As Control System Users, we would like
• a Control system that

• behaves as we expect it to
• prevents us from making mistakes

• Evolution according to our priorities
… while we know that we have to improve in defining our priorities.

As LHC-OP SW developers, we would like to
• develop in teams together with CO developers.
• have intuitive domain specific layers to program against and
• be closely involved in evolving the control system in design and implementation

as well as strategic decisions.
… while we know that we have to improve our SW-development skills

Lift off

Careful evolution to drive CERN’s

accelerators safely into the future

