CONTROLS - AN OP PERSPECTIVE

K. Fuchsberger

Abstract

Based on controls expectations from previous years, this
talk will summarize which of these issues were fulfilled
during the last years and which are still pending. Actual
problems and potential improvements of the actual LHC
control system will be discussed with the goal of outlining
a coherent longterm vision.

INTRODUCTION

During the past years, the LHC control system has
evolved to a very good state. In general, the control system
is very stable and all operational scenarios are well man-
ageable, even including some more uncommon’ scenarios
such as 'Ramp & Squeeze’. Additionally, a lot of improve-
ments and cleanups of APIs were completed during Long
Shutdown 1 (LS1).

Having in mind the very good quality of service, the
question might be asked, if changes are required at all?
This question must be clearly answered with ’yes’, with
the following arguments:

e Improvements have to be made to avoid mistakes and
increase availability [1].

e Changes are necessary to (carefully) evolve and up-
date the control system; The world around changes
(e.g. new computer language versions, new proces-
sors, etc.).

Despite the fact that changes are required, sometimes it
happened in the past that changes were introduced which
were not really requested by operation but nevertheless had
a big impact on many layers. Examples are:

e Breaking API changes in general

e [SA refactoring (with breaking changes)

Logging Service API (changed twice)

Changes in various FESA classes

incompatible rewrites of middleware frameworks
(FESA and RDA).

Although it is also understandable that such changes might
be necessary from time to time, the main aspect to im-
prove here is communication and transparency which is re-
quired in advance to reduce the unforeseen impact of such
changes.

REQUESTS FROM PREVIOUS EVIAN
TALKS

We mentioned in the previous section that some changes
were implemented but not requested. Therefore, it is worth
looking at requests from OP and their completion rate.
Since there are no official statistics available for this data,
we will take a very simplistic approach and look at the re-
quests which were mentioned in talks from previous Evian
workshops [2, 3]. Figurel shows the summary of this
analysis, giving the percentage of implemented and not-
implemented features, requested during the years 2010 and
2011. A more detailed list is shown in Fig. 2.

@ not done
@ done
@ won't fix

66.7%

Figure 1: Features mentioned in Evian talks related to con-
trols in the years 2010 and 2011 and the percentages of
those which were implemented.

It should be noted that this is a very rough analysis and
the reasons why certain features were implemented and
others not were not analyzed. The only deduction is that
about a third of the features requested in previous Evian
talks were implemented.

WHAT OP WANTS - THE LHC TOP 5

Having looked at the requests from previous years, it is
the next step to see what features the LHC operations team
would like to have for the future in order to operate the
machine in a more efficient way. To answer this question,
a series of meetings were conducted with the goal to find
a consensus and define the next goals for the LHC control
system for the near future.

Name Description Evian 2010 Evian 2011 Now

(Restart a circuit - Jumping between

Equipment Control equip state, PIC and Circuit Synoptic) | requested not done not done

Injection Schema creation sallperl scripts —> Editor requested done
1Q¢ does not latch normal conditions should be green requested not done not done
Sequencer Checklist panel requested wont fix won' fix
Sequencer Parameter requested not done done
Sequencer parallel subsequences requested .naldane not done
State Machine influences
workflow requested not done not done
Lsa compare seftings requested done
Easy Lsa rollback trims e.g. all parameters of same tim requested not done not done
Lsa history of driven params and resident BPs requested done
history of resident 8P requested not done not done

More flexible (e.g. one rule per BP type

Lsa incorporation improvement not enough, snapback incorporation) requested not done not done

Knob application requested done

Hypercycle change clear procedure and sequence requested not done not done
No Alarm when everything ok, mode

Alarm Configuration dependance requested not done not done
See at one glance when a server has a

Diamon Configuration problem requested not done not done

Glear information of the hierarchy

between application, middietears

proxy, frontends requested not done not done
Task copy. cut paste/ Subsequences.

Sequence editor improvements change tracking requested done
Summary display with all the involved
systems. "Why did the beam not

Injection Interlocks come?" requested not done not done

Fixed Displays Fixed displays per machine mode requested not done not done
Well tested. communication of

Software releases changes requested not done done
sequences have to be edited each

Timing/sequences in injectors time, 3-4 supercycles to change requested not done

Fidel fixed display requested not done
Distinguish between absolute
requirements and simple checks to
help efficiency; "After LS1 forcing a
state should be exceptional, even in

State Machine flexibility MDs" requested not done
Not easy to know on which version a

FESA device is running on; review Navigator. requested not done

Fill by fill data analysis requested done
bib data: avoid ad-hoc storage
solution: Common System to log large

Data storage amount of data requested not done
hypercyc le change ater fidel started ->

Fidel hypercycle change precycle needed requested done
more user friendly tools to edit the
menues, automatic periodic refresh of

Console manager menu configuration requested not done

Regeneration needs expert signature,

MCS problem complicated workaround requested not done not done

Figure 2: Detailed list of controls related features men-
tioned in Evian talks in the years 2010 and 2011.

Note: The results given in this section, are those which
were available at the time of the workshop. In the mean-
time, the priorities and results have evolved. Still, we will
only present the state at the time of the workshop.

In preparation for these meetings, the following three
questions were asked to the the operations team:

What do you consider as the ...

e ...most important features/properties/components
that an ideal control system should have? (Long term)

e ...most important improvements that should be made
to the available tools?

e ... most important issues that should be fixed as soon
as possible?

Since time was short before the workshop, and no con-
sensus could be reached during the meetings, a simple
email vote was conducted to get an impression on the prio-
rities. The result of this vote forms the basis of the fol-
lowing top 5 priorities at the time of the workshop. The
distribution of the vote result is shown in Fig. 3.

It is clear that the distribution is quite flat and that there
is no real significant *winner’ in this vote. This distribution
clearly points to the fact that the operation crew is far from
a consensus in this matter and some further discussion has

B,
Votes NELIM
(igh, Medium, Low importance) N, A
wa Ry
N Count(HIGH) [l Count(MEDIUM) Count(LOW)

15 Votes in total

—
Importance

Figure 3: Distribution of the voting result, ordered de-
scending by number of "HIGH’, "MEDIUM’ and "'LOW’
importance.

to be completed before a clearer statement on the OP prio-
rities can be given. (NOTE: Further meetings were made
in January, with different outcomes - not discussed here).
For the following we took a rough cut around the point
where about 50% of the voters considered these improve-
ments as "VERY IMPORTANT". All the features above this
threshold are presented in the following in more detail.

1 - Improved Automation/Sequencer/Scripting

The item which was voted as priority number 1 was very
broad. This is most probably also the reason why it re-
ceived so many votes. So the result indeed is quite doubt-
ful and of limited use. For a follow-up, this clearly has
to be split. Still, we describe here the main proposals for
improvements which were mentioned within this context:

Sequencer Execution:

e (Automation) Parallelism would be useful.

e Better overview would be good when several se-
quences are running.

e Several small details (e.g. Quirky Windows be-
haviour, Better error presentation).

Sequence Editing:

e Long time/chain from idea to operation (every change
in a task needs a sequencer release).

e Tools that make it easier to refactor between different
layers (Sequence <+ Task) would be useful.

e Scripting (More flexible - and more dynamic - way to
create scripts/macros/sequences). E.g. for Easy way
to formulate commissioning tests

Settings vs. Sequences:

e Clear separation between settings and sequence would
be preferable, instead of hardcoded values in sequence
(devices, contexts, values).

e New concept of Templates/Operational Scenarios
(certain modes of operation (e.g. Proton Physics,
Lossmaps, VdM scans)

e Avoid e.g. different sequences for different particle
types. (New copies with slight changes) Clearly see
the discrepancies when something is wrong.

2 - QPS/PIC/Equip State

This item covers the whole problem of dealing with cir-
cuits and the circuit protection system from an operational
point of view. Features/Improvements which were men-
tioned in this context are:

e As soon as the PIC permit is lost, the root cause could
be displayed immediately. The Post Mortem system
knows it, but it takes long. Could this be faster?

e Replacement for QPS macros? e.g. Sequences or new
mechanism?

e Better integration of WinCC GUIs in other control
systems.

e Simple overview would be good; Dig down in case of
problems.

e Easy tool for Circuit (+QPS) resets would be appreci-
ated.

3 - Improved Filling Diagnostics

In the current way of operating the LHC, a lot of time
is lost during the injection phase [4]. Especially, when the
beam is requested, but is not injected, the problems are hard
to diagnose.

One way to improve this situation would be to intro-
duce another display which could show (potential) prob-
lems which led to the situation that the last injection did
not happen. A later version could most probably even pre-
dict if a following injection would work.

4 - Easily usable tool to move collimators

The current available tools to move collimators are not
easily usable and also supposed to be only used by experts
from the collimation team. However in several situations
(e.g. Commissioning phase, Loss maps) situations occur
where collimators have to be manipulated by the operations
crews. Because of the expert nature of the applications and
the rareness of these situations, performing this task is dif-
ficult and potentially dangerous.

Also e.g. moving collimators to the parking position is
often needed but requires complicated acrobatics of making
some Beam Process resident plus pressing the right combi-
nations of buttons in EquipState. A small operational ap-
plication with a subset of the expert functionality and eg. a
set of predefined scenarios (Move to parking, Symmetrize
TCTs) would help to improve this situation.

Another useful tool would be a small display where to
see the collimators (probably w.r.t. the beam). Such func-
tionality was implemented once in the aperture meter, but
was never made operational.

5 - Improve Window Management on Consoles

This topic is on the table since 2010 [2]. This point is all
about operational efficiency on CCC consoles. Remarks
which were brought up in the survey are:

e Rationalization of the space on the consoles, avoiding
overlapping windows. Probably a different window
manager could help here.

e Perspectives per activity: e.g. Injection, Ramp,
Lossmaps, Powering. The beam mode (or later the
state machine) could decide what gets displayed and
where.

e Autostart of a predefined set of applications on con-
soles (e.g. after a reboot).

e Keyboard Shortcuts (e.g. new logbook entry, search
for an application).

DEVELOPERS VIEW

In addition to the operational perspective, it is also very
important to take the view of a software developer. This
is critical, because a big percentage of the applications are
developed and maintained within the operation team itself,
by operators and EICs. Figure4 shows the percentage of
origins of the most important GUISs, visible on the LHC
consoles. Even if this only is a very rough number because
of course the underlaying software (servers, FESA classes)
is most of the time from other sections, it at least empha-
sizes the relevance of software developed in the OP group.

In the following we will discuss the status and potential
improvements as seen by this developers perspective.

Layers

Currently, in our control system environment, develo-
ping a high level controls application is not straight for-
ward. In order to achieve different tasks, different underly-
ing components have to be accessed. For example:

e Settings: In order to store settings for devices, change
them and drive them to the actual hardware, the appli-
cation has to access different services of LSA.

e Measurements: To get (or subscribe to) measurement
data, the application has to access devices (mostly
FESA) directly and know the structure of the under-
laying control system.

e Historical Data: To get historical data, an application
has to access the accelerator logging service (CALS)
and has to know how the logging variables are related
to devices and properties.

@® COo
® OF
Other

Figure 4: Distribution of origin of the applications mostly
open on the CCC consoles. The three parts are num-
ber of applications written by members of the operations
crew (OP), members of the controls group (CO) and others
(Other).

Through all the mentioned channels, a software developer
receives different data types, data of different abstractions
and conversions are necessary all the time, which are re-
implemented in every application. This encourages copy-
paste code which is error prone and hard to maintain.

An additional problem is that different parts of the con-
trol system are designed by different people and sections
within the controls group without a common vision. So the
proposed solution for a given problem strongly depends, in
practice, on which section/person is asked first and there-
fore several times functioniality is not implemented in the
most efficient manner.

The first thing which could improve this situation is to
put in place a better layering. While such layers are called
’business layers’ in industry, we will refer to it as *physics
layer’ in the following. This concept is roughly sketched in
Fig.5.

Such a physics layer would ideally have the following
properties:

e Domain Driven Design

e It eases testing, by facilitating the replacement of cer-
tain layers by testing layers.

e [t makes writing applications (clients) damn easy.

The last point is illustrated in Listing 1. It shows a few lines
of (fictionally) getting the tune of one beam of the LHC or
subscribing to it.

Listing 1: RefOrbitService usage example

Tune tune = get(HORIZONTAL, TUNE)
.of (LHC, BEAMI);

LSA

(Settings management) TS

— —

LSA DB Equipment

Figure 5: Sketch of a layered control system, with a
"physics layer’ in place (which is not the case at the time of
writing).

on (HORIZONTAL, TUNE). of (LHC, BEAMI)
.subscribe (System.out:: println);

THE GLOBAL VIEW

As mentioned already in one of the previous sections,
one of the current problems in our control system is a
lack of global vision. Different parts of the control system
(GUIS, servers, devices) are developed in ’islands’ (small
teams or - most of the time - individuals). This introduces
incoherence and code duplication.

To counteract this tendency, it is necessary to develop
a global long term vision. This could be based (amongst
others) on basic principles listed below. For example, the
control system should

e be intuitive,

e be consistent,

be simple on top, easy to dig down,

be built to be tested,

be built to grow,

have the right dose of automation.

FEARLESS TESTING

Most of the parts of the current LHC control system are
hard to test without beam. Even worse, sometime it is even
unclear if testing a certain component would influence the
production environment (e.g. could potentially dump the
beam) or if it is safe to test. This leads to a hesitation of
people to test their code. This slows down development,
prevents change and fast deployment and thus lets the code-
base degrade.

To escape this problem a lot of effort has to be put in the
future into untangling components, providing consequent
layering and making it simple to develop simulators and
testbeds for control system components. The goal should
be a testing environment which allows each developer to
test their components without the fear of interfering with
operations.

LHC OP SOFTWARE STATUS

As mentioned in a previous section, a lot of software
is developed within the OP group itself. Figure 6 illus-
trates the actual status of the sourcecode of software for the
LHC which is maintained by the OP group (in this exam-
ple, people from the LHC and SPS sections). The plot was
preduced using metrics from sonarqube [5] and shows the
number of lines of code (LoC) and the estimated technical
dept in mandays.

Log
@

Technical Debt

LoC Log

Figure 6: Technical debt of projects vs Lines of code
(LoC).

Actual Status In numbers, the situation is as follows:

e 500.000 lines of code (800.000 lines in total)
e 13.6 man-years of technical debt

o 6(LHC) + 2(SPS) people writing software

e — 8.4 minutes of tech dept per line of code!

In addition to the mentioned existing debt, there are seve-
ral projects which are under discussion to be taken over by
OP, because there is no other possibility to maintain them.
The situation of these projects are illustrated in Fig. 7. In
numbers this reads as follows:

e 100.000 Lines of code, 160.000 lines in total (20%
of actual codebase)

e 2.5 man-years of tech debt

Technical Debt

LoC Log
2015

Figure 7: Technical debt vs lines of code (LoC) which po-
tentially should be maintained by the OP group in addition
to the actually maintained projects.

e 2 students projects + 1 external SW stack.
e — 8 min/LoC

It is interesting to note that the incoming projects have a
comparable quality than the currently maintained codebase
(roughly 8 min technical debt per LoC).

TACKLING THE PROBLEM

One of the reasons for the bad state of the codebase is the
lack of continuity within the projects. Part of this comes
from the already mentioned lack of global vision, while
another part can (without proof) be attributed to the cur-
rent “process’ of software development in OP: Very often
it happens that people (with a lack of software experience
themselves) get in students which are told to write soft-
ware. Even if these students do their best, the outcome is
very often avarage or below, due to a lack of close supervi-
sion.

The currently proposed approach to tackle these prob-
lems is to work more in teams. Working in teams improves
knowledge sharing and allows people to learn from each
other. For sure there is also the cost of communication
overhead. However, in the current situation, the advantages
seem to outrule the costs.

When forming teams, it is difficult to find a way to work
together on one project, because each of the (future) team
members is attached to ’their own’ project and will see this
as most important. The priniciple idea here is to see all the
projects coming from the individual people as kind of "one
project” and work on this single project together, driven by
priorities. This approach is sketched in Fig. 8.

The same approach was already successfully imple-
mented in the MPE-MS section and also proved to be very
useful when a new testing system for the LHC orbit feed-
back system was developed earlier in 2015. The advantages

Works together on

Figure 8: Several individuals form a team and work to-
gether on all their projects.

are:
e it fosters knowledge exchange,
e better software is produced,

e it allows to focus which improves productivity by re-
ducing context switching

e it is more fun for the people involved.

However, part of this is very hard to do within the OP
group, because of the shiftwork. It is especially difficult
to ensure ...

e ...continuous progress,
e ...continuous supervision,
e ...continuous support.

The only way to consolidate this approach is to encour-
age collaboration with other sections. In this spirit, several
development iterations are in preparation together with the
TE-MPE section for 2016. Also the CO-APS comitted to
give a try to this approach later in 2016.

SUMMARY, FOLLOW UP AND OUTLOOK

The LHC control system is in a good shape. Everything
is working well and all (even complicated) physics cases
are well covered. This is the time of careful evolution. In
this paper, we presented two major viewpoints:

As Control System Users, we would like a Control sys-
tem that behaves as we expect it to, prevents us from mak-
ing mistakes and evolves according to our priorities. At the
same time we know that we have to improve in defining our
priorities.

As LHC-OP software developers, we would like to de-
velop in teams together with developers of the controls
group, have intuitive domain specific layers to program
against and be closely involved in evolving the control sys-
tem in design and implementation as well as strategic deci-
sions. At the same time we are conscious that we have to
improve our software-development skills.

After the actual Evian workshop, several additional
meetings were conducted and our priorities were refined.
Several collaborative sprints were completed together with

the TE-MPE section and another effort which involves CO
developers is in preparation at the time of writing.

For the actual year, the aim is to start earlier with discus-
sions and prioritization to be ready for the winter shutdown
2016/2017.

REFERENCES
[1] A. Apollonio, “2015 availability analysis”, these proceed-
ings.

[2] D. Jacquet, “Software and Controls Issues”, Proceedings of
Evian Workshop 2010.

[3] D. Jacquet, “What we Want”, Proceedings of Evian Work-
shop 2011.

[4] D.Jacquet, “Injection”, these proceedings.

[5] http://www.sonarqube.org

