Optics model

Andy Langner, on behalf of the OMC Team

European Organization for Nuclear Research (CERN) & Universität Hamburg 6th Evian Workshop, 15.12.2015

References

- "Outcome of optics measurements", R. Tomás, LMC, 17.06.15
- June Updated results from triplet k-modulation", M. Kuhn, LBOC, 24.11.15
- "Beta* corrections strategies", T. Persson, LBOC, 24.11.15
- "MD result: alignment optics", A. Garcia-Tabares Valdivieso, 60th HiLumi WP2 Task Leader Meeting, 20.11.15
- "MD results: non-linear corrections", E. Maclean, 60th HiLumi WP2 Task Leader Meeting, 20.11.15
- "Optics errors in ballistic optics", L. Malina, OMC meeting, 10.12.15
- Segment-by-segment with beta* and alpha* constraints, J. Coello de Portugal, OMC meeting, 10.12.15

Outline

- Optics quality in 2015
- Issues during the optics commissioning
 - β*, waist shift
 - Dispersion
- Proposed strategy for 2016 commissioning
 - Ballistic optics
 - Optics situation for combined ramp & squeeze
 - How stable are the optics
 - Non-linear errors in the interaction region

Optics quality in 2015

- Peak beta-beat below 10% (below 5-6% in vertical planes)
- Constant local and global corrections from 80 cm to 40 cm

Beta-function at IPs

Notation to differentiate between β at the IP and the actual minimum β at the waist ω

Beta-function at IPs

Proton run		β* (cm)		ω (cm)	
$\beta^*_{design} = 80 cm$		horizontal	vertical	horizontal	vertical
Beam 1	IP1	87.8 ± 1.3	86.5 ± 0.7	24 ± 1	23 ± 1
	IP5	86.2 ± 1.1	86.4 ± 4.9	20 ± 1	15 ± 1
Beam 2	IP1	81.9 ± 1.3	82.7 ± 0.6	17 ± 2	21 ± 1
	IP5	86.7 ± 1.4	82.7 ± 2.0	22 ± 1	11 ± 1

- β* was larger than design
 - directly translates into luminosity
- ▶ Waist was shifted by ~20 cm
- ▶ Will become more critical for a squeeze to 40 cm in IP1/5

Waist shift correction demonstration

		Proton Run		Ion Run	
		ω (cm)		ω (cm)	
		horizontal	vertical	horizontal	vertical
Beam 1	IP1	24 ± 1	23 ± 1	2 ± 4	5 ± 2
	IP5	20 ± 1	15 ± 1	-4 ± 5	1 ± 2
Beam 2	IP1	17 ± 2	21 ± 1	4 ± 3	-4 ± 2
	IP5	22 ± 1	11 ± 1	2 ± 4	-9 ± 3

- Waist shift correction was successfully demonstrated during lon run commissioning
- Increased expected luminosity by 3-5%

Required improvements:

Change our codes to take β* and waist position as additional constraints when calculating corrections

- Change our codes to take β* and waist position as additional constraints when calculating corrections
- Fully online k-modulation measurements

- Change our codes to take β* and waist position as additional constraints when calculating corrections
- Fully online k-modulation measurements

- Change our codes to take β* and waist position as additional constraints when calculating corrections
- Fully online k-modulation measurements

- Change our codes to take β* and waist position as additional constraints when calculating corrections
- Fully online k-modulation measurements

Ion run corrections for protons

Dispersion measurements

Q1 movement (~30 μm) disturbed many dispersion measurements

Dispersion measurements

- ▶ Q1 movement (~30 µm) disturbed many dispersion measurements
- For future dispersion measurements need to avoid periods where Q1 is moving fast

Dispersion measurements

- Many dispersion measurements during 2015 commissioning were spoiled due to IR8 quadrupole movements
- Limited global correction quality

uncorrected machine

Calculate local corrections uncorrected machine Measure K-mod

Measure Turn-by-turn

Calculate local corrections locally corrected uncorrected machine Measure K-mod Measure Turn-by-turn

3-4 shifts for 40 cm/50 cm commissioning

▶ Promising results from 2015 MD (injection energy, beam 2 only)

- Promising results from 2015 MD (injection energy, beam 2 only)
- Disentangle triplet errors from other IR magnets
 - Useful for local corrections

- Promising results from 2015 MD (injection energy, beam 2 only)
- Disentangle triplet errors from other IR magnets
 - Useful for local corrections
- Calibration of BPMs
 - Required to calculate β-function from amplitude
 - Potential to derive precise β* from turn-by-turn measurements

- Promising results from 2015 MD (injection energy, beam 2 only)
- Disentangle triplet errors from other IR magnets
 - Useful for local corrections
- Calibration of BPMs
 - Required to calculate β-function from amplitude
 - Potential to derive precise β* from turn-by-turn measurements
- **1.5 shifts** needed for a complete set of measurements (both beams) at 6.5 TeV

Combined ramp and squeeze (CRS)

- Optics behaved very well during CRS to 3 m
- They do not pose a limit to squeeze to even smaller β*

Can we re-use optics corrections every year? (Stable machine configuration, no change in β*)

- Can we re-use optics corrections every year?
 (Stable machine configuration, no change in β*)
- We have various examples of good reproducibility for injection optics after time periods ~6 months

- Can we re-use optics corrections every year? (Stable machine configuration, no change in β*)
- We have various examples of good reproducibility for injection optics after time periods ~6 months
- We are lacking good data of repeated measurements for squeezed optics
- 40 cm measurement after ~ 4 months are compatible within (large) error bars

Triplet corrections - 2012 (4TeV) vs 2015 (6.5TeV)

- Corrections are deviating significantly
- 2012 corrections could not be re-used after 3 years

Possible reasons for the difference 2012 vs 2015

- ? Energy related (4 TeV vs. 6.5 TeV)
 - ▶ Optics errors at 2.51 TeV (2015) were compatible with 6.5 TeV
- ? Effects from the long technical stop
- ? New longitudinal misalignments
- ? Magnet ageing

Possible reasons for the difference 2012 vs 2015

- ? Energy related (4 TeV vs. 6.5 TeV)
 - Optics errors at 2.51 TeV (2015) were compatible with 6.5 TeV
- ? Effects from the long technical stop
- ? New longitudinal misalignments
- ? Magnet ageing

Good reproducibility after **6 month** (2012)

Possible reasons for the difference 2012 vs 2015

- ? Energy related (4 TeV vs. 6.5 TeV)
 - Optics errors at 2.51 TeV (2015) were compatible with 6.5 TeV
- ? Effects from the long technical stop
- ? New longitudinal misalignments
- ? Magnet ageing

Good reproducibility after **6 month** (2012)

Surprises after **3 years** including technical stop

Possible reasons for the difference 2012 vs 2015

- ? Energy related (4 TeV vs. 6.5 TeV)
 - Optics errors at 2.51 TeV (2015) were compatible with 6.5 TeV
- ? Effects from the long technical stop
- ? New longitudinal misalignments
- ? Magnet ageing

Good reproducibility after 6 month (2012)

Surprises after **3 years** including technical stop

Quick optics checks on a **yearly** basis would be proposed

Motivation:

- ▶ Improve dynamic aperture → longer lifetime → more integrated luminosity
- At RHIC 10- and 12-pole correctors increased integrated luminosity by 4%, c.f. IPAC" 10 THPE099

Motivation:

- ▶ Improve dynamic aperture → longer lifetime → more integrated luminosity
- At RHIC 10- and 12-pole correctors increased integrated luminosity by 4%, c.f. IPAC'10 THPE099

Motivation:

- ▶ Improve dynamic aperture → longer lifetime → more integrated luminosity
- At RHIC 10- and 12-pole correctors increased integrated luminosity by 4%, c.f. IPAC'10 THPE099

b3 in IR2
b3+a4 in IR1
b4 in IR1+IR5

Not understood

a3 in IR1
b3 in IR5

Not studied
a3+a4 in IR5

Motivation:

- ▶ Improve dynamic aperture → longer lifetime → more integrated luminosity
- At RHIC 10- and 12-pole correctors increased integrated luminosity by 4%, c.f. IPAC'10 THPE099

- 2 shifts should allow commissioning of some of these corrections.
- 1 after optics commissioning, 1 later (not a bottle-neck to delay high intensity commissioning)

Recap on the 2016 commissioning

- 1. Ballistic optics ▶ 1.5 shift
- 2. Ramp & Squeeze > 0.5 shift
- 3. 40cm/50cm optics ▶ 3-4 shifts
- 4. Non-linear IR

 2 shifts

Conclusions

- Globally well corrected optics achieved in 2015
- Improved strategy for 2016
 - Mitigate β* waist shift & dispersion issue
 - Ballistic optics
 - Improve local corrections
 - More precise β* from turn-by-turn measurement
 - Correction of IR non-linear errors

Thank you for your attention!

OMC Team:

Felix Carlier, Jaime Coello de Portugal, Ana Garcia-Tabares Valdivieso, Andy Langner, Ewen Maclean, Lukas Malina, Tobias Persson, Piotr Skowronski, Rogelio Tomás

Backup

Ballistic optics - BPM calibration

