Luminosity, Emittance Evolution & OP Scans

M. Hostettler, G. Papotti

Acknowledgements: F. Antoniou, A. Dabrowski, W. Herr, W. Kozanecki, M. Kuhn, P. Lujan, Y. Papaphilippou, T. Pieloni, M. Solfaroli, D. P. Stickland, G. Trad, J. Wenninger, LHC Shift Crews

Evian, 2015-12-15

outline

- OP scans
 - technique, parameters
 - errors, comparison to other instruments
- emittance in stable beams
 - emittance at the start of stable beams
 - emittance evolution in collisions
 - BCMS beam observations
- Iuminosity & luminosity lifetime
 - luminosity & luminosity lifetime in 2015
 - optimum fill length
 - IP 1/5 luminosity imbalance
- 4 conclusions & outlook

OP scans: technique, parameters

- estimate beam spot size by displacing beams at the IP and recording the luminosity change
 - fit Gaussian to relative luminosity vs beam separation
 - only dependences: knob accuracy and lumi linearity
- latest parameters & strategy
 - scan at the start, after 10h and before dump
 - IP 5 only, earlier IP 1 & 5
 - IP 1: instabilities, luminosity monitor non-linearities
 - IP 5: appreciated by CMS, bunch-by-bunch data available
 - 7 steps per plane, 10 s per step, $\pm 3\sigma$ displacement
 - cost: ~40 seconds at low luminosity per scan

errors, comparison to other instruments

- errors: $\sim 6\%$ in the separation plane, $\sim 20\%$ in the crossing plane
 - luminosity non-linearity (~5%), β^* (~3%), dynamic β^* (~2%), beam-beam kick (~2%)
 - crossing plane only: crossing angle (~15%), bunch shape (~10%)
 - bunch-to-bunch relative differences: only non-linearity
 - evolution in a fill: non-linearity and bunch shape

errors, comparison to other instruments

- errors: $\sim 6\%$ in the separation plane, $\sim 20\%$ in the crossing plane
 - luminosity non-linearity (~5%), β^* (~3%), dynamic β^* (~2%), beam-beam kick (~2%)
 - crossing plane only: crossing angle (~15%), bunch shape (~10%)
 - bunch-to-bunch relative differences: only non-linearity
 - evolution in a fill: non-linearity and bunch shape
- agreement with wire scanners within error bars
 - checked (parasitically) for 5 fills with 3 single bunches

errors, comparison to other instruments

- errors: $\sim 6\%$ in the separation plane, $\sim 20\%$ in the crossing plane
 - luminosity non-linearity (~5%), β^* (~3%), dynamic β^* (~2%), beam-beam kick (~2%)
 - crossing plane only: crossing angle (~15%), bunch shape (~10%)
 - bunch-to-bunch relative differences: only non-linearity
 - evolution in a fill: non-linearity and bunch shape
- agreement with wire scanners within error bars
 - checked (parasitically) for 5 fills with 3 single bunches
- ullet OP scan emittance in ATLAS and CMS compared during μ -scan fill
 - near perfect relative bunch-by-bunch agreement
 - absolute values very sensitive to crossing angle, agree within error bars
 - extra information about geometric factors in ATLAS and CMS

emittance at start of stable beams

- convoluted emittances at the "start" of stable beams
 - OP scans done up to ~2 h into stable beams
 - using measured β^* (0.84 m) and nominal crossing angle
 - \bullet emittances from luminosity, OP scans and BSRT within ${\sim}20\%$

emittance at start of stable beams

- convoluted emittances at the "start" of stable beams
 - OP scans done up to ~2 h into stable beams
 - using measured β^* (0.84 m) and nominal crossing angle
 - emittances from luminosity, OP scans and BSRT within ~20%
- emittances around $3 \mu m$

Luminosity & OP Scans

• emittance evolution for fills with at least 2 OP scans

- emittance evolution for fills with at least 2 OP scans
- horizontal emittance growth, $\sim 0.03 \, \mu \text{m/h}$ (crossing plane uncertainty)

- emittance evolution for fills with at least 2 OP scans
- horizontal emittance growth, $\sim 0.03 \, \mu \text{m/h}$ (crossing plane uncertainty)
- vertical emittance shrinkage, $\sim 0.02 \, \mu \text{m/h}$

^{*} excluded CMS points for fills with magnet off or ramping

- emittance evolution for fills with at least 2 OP scans
- horizontal emittance growth, $\sim 0.03 \, \mu \text{m/h}$ (crossing plane uncertainty)
- vertical emittance shrinkage, $\sim 0.02 \,\mu\text{m/h}$
- convoluted emittance: constant within error bars
 - BSRT sees small shinkage, difference in horizontal plane

^{*} excluded CMS points for fills with magnet off or ramping

BCMS beam observations (fill 4555, 601 bunches)

- mean emittances in stable beams
 - start: ${\sim}0.5\,\mu\mathrm{m}$ lower than nominal
 - horizontal growth, vertical constant

time in SB	Н	V
14 min	$2.3\mu{ m m}$	$2.5\mu{ m m}$
132 min	$2.5\mu{ m m}$	$2.5\mu{ m m}$

BCMS beam observations (fill 4555, 601 bunches)

- mean emittances in stable beams
 - start: ${\sim}0.5\,\mu\mathrm{m}$ lower than nominal
 - horizontal growth, vertical constant

time in SB	Н	V
14 min	$2.3\mu{ m m}$	$2.5\mu{ m m}$
132 min	$2.5\mu{ m m}$	$2.5\mu{ m m}$

- bunch-by-bunch observations
 - selective blow-up on first train in vertical plane
 - large spread in emittances over trains, ~1 μ m
 - conditioning possible?
 - first and second trains in a batch behave differently

M. Hostettler Luminosity & OP Scans

BCMS beam observations (fill 4555, 601 bunches)

- mean emittances in stable beams
 - start: ~0.5 μ m lower than nominal
 - horizontal growth, vertical constant

time in SB	Н	V
14 min	$2.3\mu\mathrm{m}$	$2.5\mu{ m m}$
132 min	$2.5\mu\mathrm{m}$	$2.5\mu\mathrm{m}$

- bunch-by-bunch observations
 - selective blow-up on first train in vertical plane
 - \bullet large spread in emittances over trains, ~1 $\mu \mathrm{m}$
 - conditioning possible?
 - first and second trains in a batch behave differently

luminosity & luminosity lifetime in 2015

- luminosity lifetime very good w.r.t. 2012
 - 2015: $30 60 \,\mathrm{h}$, peak ~5000 Hz/ $\mu \mathrm{b}$
 - 2012: 5 10 h, peak ~7500 Hz/ μ b
- 6.5 TeV: synch light damping, emittance shrinking
- 25 ns: lower initial brightness, intensity and luminosity per bunch
- luminosity decay strongly dominated by intensity decay

optimum fill length (from 2015 lumi data)

- optimum fill length calculated from direct fit to luminosity curves
 - "turnaround time" = time from dump to next physics
 - see LBOC presentation of 2012-10-30

60

optimum fill length (from 2015 lumi <u>data)</u>

- optimum fill length calculated from direct fit to luminosity curves
 - "turnaround time" = time from dump to next physics
 - see LBOC presentation of 2012-10-30
- for turnaround times in 2015 (M. Solfaroli)
 - most probable case: ~6.5 h
 - optimum fill length: ~25 h

optimum fill length (from 2015 lumi data)

- optimum fill length calculated from direct fit to luminosity curves
 - "turnaround time" = time from dump to next physics
 - see LBOC presentation of 2012-10-30
- for turnaround times in 2015 (M. Solfaroli)
 - most probable case: ~6.5 h
 - optimum fill length: ~25 h
 - optimistic case: ~3 h
 - optimum fill length: ~16 h

- CMS luminosity consistently lower than ATLAS
 - \bullet ~9% at the start of stable beams, ~4% in the end

- CMS luminosity consistently lower than ATLAS
 - \bullet ~9% at the start of stable beams, ~4% in the end
- possible physical causes
 - β^* , dynamic β , form factor (*R. Tomas et al., LBOC 2015-10-27*)
 - crossing angle (J. Wenninger, LBOC 2015-10-27)
 - indication from μ scan fill: luminous area ~2% bigger in CMS

10 / 11

- CMS luminosity consistently lower than ATLAS
 - \bullet ~9% at the start of stable beams, ~4% in the end
- possible physical causes
 - β^* , dynamic β , form factor (*R. Tomas et al., LBOC 2015-10-27*)
 - crossing angle (J. Wenninger, LBOC 2015-10-27)
 - indication from μ scan fill: luminous area ~2% bigger in CMS
- latest results from VdM scans in August
 - ATLAS high by 3.3%, residual error on calibration 5% (W. Kozanecki)
 - CMS low by ~4%, residual error on calibration 4.6% (P. Lujan)

10 / 11

- CMS luminosity consistently lower than ATLAS
 - \bullet ~9% at the start of stable beams, ~4% in the end
- possible physical causes
 - β^* , dynamic β , form factor (*R. Tomas et al., LBOC 2015-10-27*)
 - crossing angle (J. Wenninger, LBOC 2015-10-27)
 - indication from μ scan fill: luminous area ~2% bigger in CMS
- latest results from VdM scans in August
 - ATLAS high by 3.3%, residual error on calibration 5% (W. Kozanecki)
 - CMS low by ~4%, residual error on calibration 4.6% (*P. Lujan*)
 - luminosity imbalance down to ~1%

10 / 11

conclusions & outlook

- luminosity & luminosity lifetime
 - peak ~5000 Hz/ μ b, lifetime 30 60 h
 - 25 h optimal fill length for 6.5 h turnaround time
- emittance in stable beams
 - nominal beams:
 - start of stable beams: $\sim 3 \,\mu \mathrm{m}$
 - horizontal growth, vertical shrinking, convoluted constant
 - BCMS beams (only one fill!)
 - \bullet start of stable beams: ~2.5 μ m, bunch-by-bunch spread
 - horizontal growth, vertical constant, convoluted growth
- OP scans
 - complementary emittance measurements in 2015
 - self-consistent and in agreement with wire scanners & BSRT
 - proposal for 2016:
 - IP5 only, end-of-2015 parameters (7 steps, 10 seconds per step)
 - scan before programmed beam dumps or after ~15 h
 - scan at the start of stable beams: frequency to be discussed with CMS
 - dedicated tab and online analysis in the new lumi scan application

M. Hostettler Luminosity & OP Scans **Evian, 2015-12-15** 11 / 11