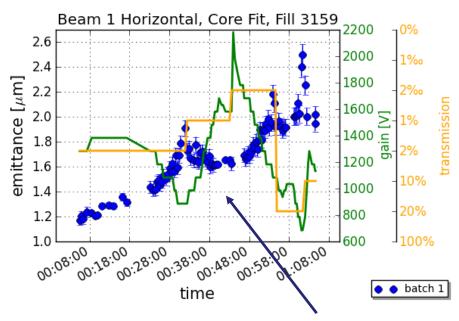


6th Evian Workshop December 2015

LHC Emittance Growth until Stable Beams

Maria Kuhn – 15 December 2015

Many thanks to V. Kain, G. Baud, E. Bravin, B. Dehning, J. Emery, M. Hostettler, E. Piselli, G. Trad.



Emittance Measurements Run 1

o Situation in 2012:

- BSRT not available for second half of 2012.
- Wire scanner: beam size strongly dependent on gain and filter of photomultiplier (PM).
- Emittance from luminosity not consistent with emittance from wire scanners.

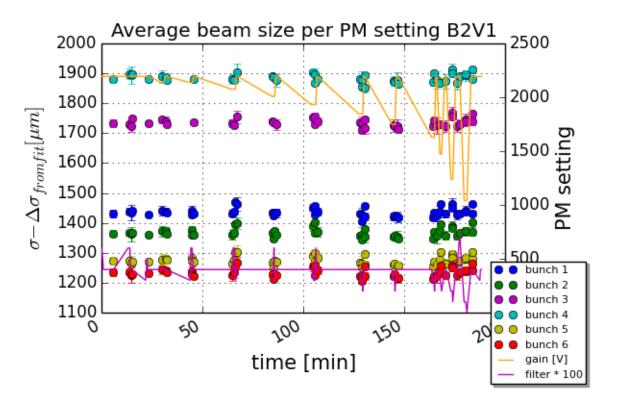
Example: ε from luminosity

Fill 3217	ε _{conv,4 TeV} [μm]
Wire scanner	1.84 ± 0.06
ATLAS	2.33 ± 0.12
CMS	2.63 ± 0.14

Beam Size Measurement 2015

- For BSRT upgrade see "Beam Profile Measurements", G. Trad, 16 December 2015, this workshop.
- Optics changes in IR4: same beam sizes at 6.5 TeV as in Run 1 at 4 TeV.
- o Wire scanner upgrade:
 - Replaced broken photomultiplier of beam 2.
 - Upgraded power supply schematics.
 - Reduced photomultiplier gain dependency on light intensity.
- → Beam size independent of wire scanner setting, no PM saturation!
- → Emittance from luminosity consistent with BSRT and wire scanners.
- → Emittance can be measured with accuracy
 _ better than 10 %.

Fill 4585	ε _{conv,6.5 TeV} [μm]
Wire scan	2.12 ± 0.27
ATLAS	2.06 ± 0.28
CMS	2.33 ± 0.32
BSRT	2.32 ± 0.33



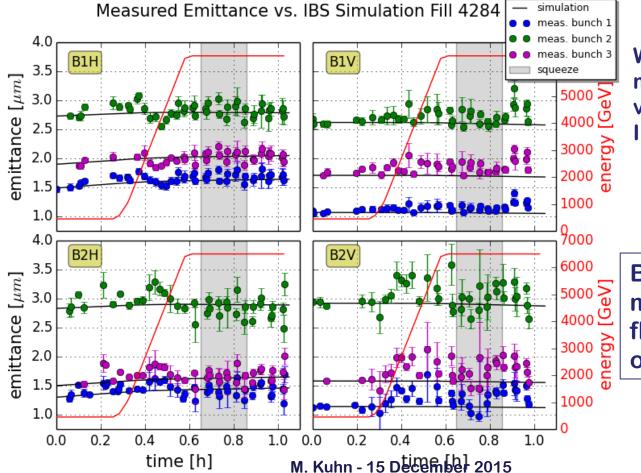
Example: PM Working Point Study

- o Scan of beam size versus gain and filter setting @ 450 GeV.
- o Measured beam size minus fitted growth from reference settings:

→ Beam size independent of PM settings. No sign of PM saturation.

Emittance Preservation 2015: Overview

- o Intra beam scattering (IBS) in horizontal planes.
 - Low ε growth due to reduced brightness 2015.
- o 50 ns beams show very little ϵ blow-up, much smaller than during Run 1.
 - Average convoluted emittance blow-up: 10 %
- o Large ϵ blow-up for 25 ns beams possibly due to electron cloud effects and beam instabilities.
 - Average convoluted emittance blow-up: 25 %
- o Strong ϵ growth in the vertical planes for many test fills.
 - Mainly during injection plateau and beginning of ramp.



Example: Test Fill 4284

3 single bunches: $I_b = 0.6 - 1.1 \times 10^{11} \text{ ppb}$, bunch length = 1.0 - 1.25 ns

- → IBS matches E evolution in H.
- \rightarrow Stronger ε growth in V. However, less than usually.
- → No measured optics during the ramp/squeeze included in analysis.

Wire scanner measurements versus MADX IBS simulations.

B2V very noisy measurement at flattop (use average of several values).

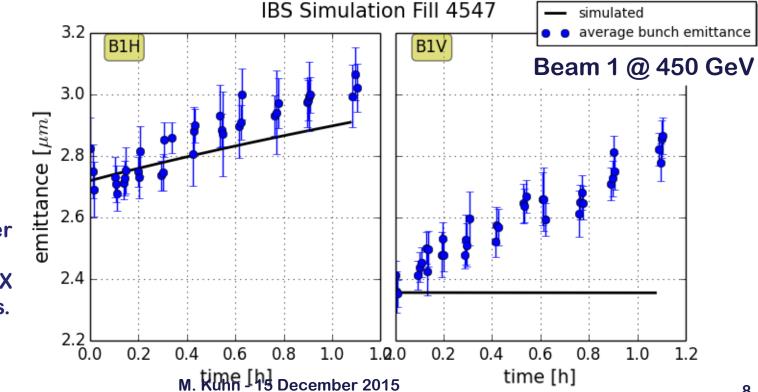
Example: Test Fill 4284 in Numbers

- o IBS matches ε evolution in H.
- o Stronger ε growth in V.

Emittance growth through the cycle of bunch 3 (purple)

	ε _{450GeV} [μm]	ε _{6.5TeV} [μ m]	Δε [%]	$\Delta \epsilon_{\sf sim}$ [%]
B1H		2.08 ± 0.12		8
B1V	1.71 ± 0.04	2.04 ± 0.13	19 ± 8	-2
B2H	1.50 ± 0.10	1.65 ± 0.12	10 ± 10	10
B2V	1.58 ± 0.03	1.95 ± 0.17	23 ± 11	-2

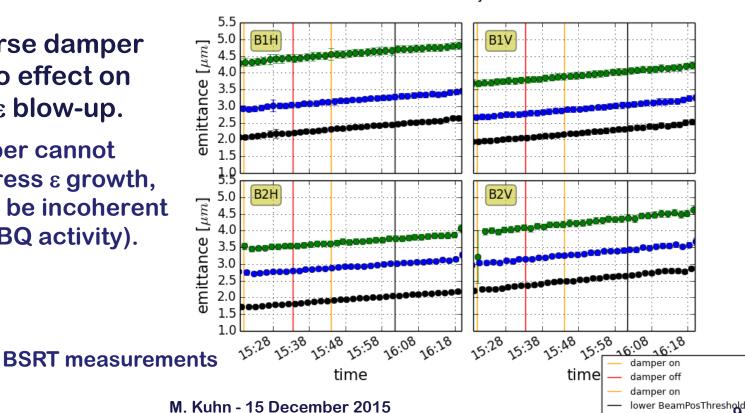
o Vertical emittance growth not consistent with IBS.



Vertical Growth at Injection Plateau

- Typical ε growth: 5 % in 10 minutes in both vertical planes. 0
- Similar ε growth times with single bunches and 12 bunch trains. 0
 - Growth goes down with energy.
 - Does not depend on chromaticity/octupole settings ($2 \le Q' \le 15$).
 - Does not depend on brightness (for tested parameter range).

Wire scanner measurements MADX versus **IBS** simulations.


Vertical Growth Induced by Damper?

- Last LHC MD block: tested effect of abort gap cleaning, injection slot cleaning, and transverse damper itself on emittance growth.
 - Single bunches at 450 GeV.
- → Abort gab cleaning: no effect.

Injection slot cleaning: blows up close-by bunches in horizontal Emittance Growth Injection Fill 4583 planes.

- **→** Transverse damper on/off: no effect on vertical ε blow-up.
 - Damper cannot suppress ε growth, could be incoherent (no BBQ activity).

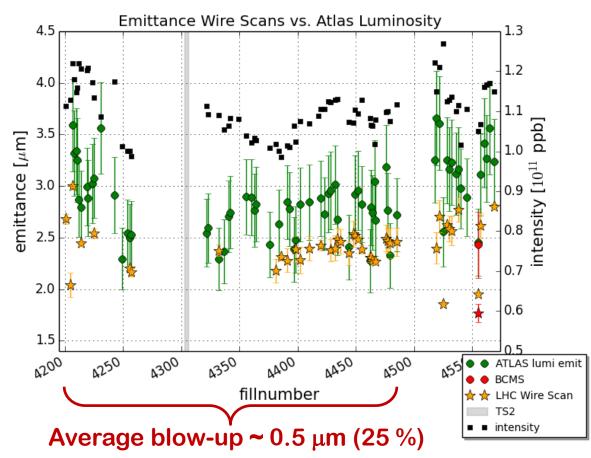
BCMS Beams in the LHC

- o Tested two 25 ns BCMS fills in the LHC in 2015: low statistics
 - Fill 4555 with nominal bunch intensity: 1.1 x 10¹¹ppb and 589 bunches.
 - Brightness ~ 0.62 x 10¹¹ppb/μm.
 - Fill 4585 with reduced bunch intensity: 0.9 x 10¹¹ppb and 12 bunches.
 - Brightness ~ 0.48 x 10¹¹ppb/μm.

Fill	ε _{450GeV} [μ m]	ε _{6.5TeV,} ATLAS [μ m]	ε _{6.5TeV,} CMS [μ m]	Δε _{ATLAS} [μm]	Δε _{CMS} [μm]
4555	1.77 ± 0.09	2.43 ± 0.32	2.55 ± 0.35	0.66 (37 %)	0.78 (44 %)
4585	1.89 ± 0.10	2.06 ± 0.28	2.33 ± 0.32	0.17 (9 %)	0.44 (23 %)

- o Large emittance growth for Fill 4555.
 - However, many instabilities at injection and start of squeeze.
- o Growth for Fill 4585 comparable with standard 25 ns fills.
 - But also similar brightness.

Emittance Blow-up vs Brightness 2015

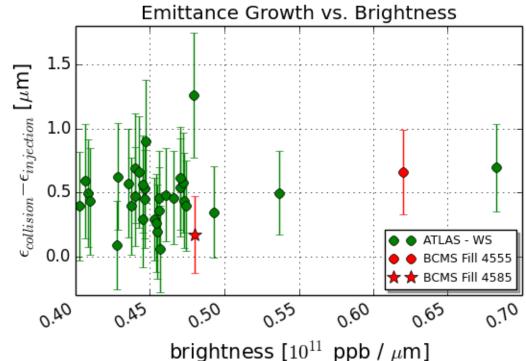


- o 25 ns fills: standard and BCMS
- o Comparison of emittance from luminosity and convoluted emittance measured at injection with wire scanners.
 - Errors include measured β^* , crossing and 10 % lumi uncertainty.

- Collision values from ATLAS luminosity
- Injection values from LHC wire scanners

$$\varepsilon = \frac{1}{2} \sqrt{(\varepsilon_{1x} + \varepsilon_{2x}) (\varepsilon_{1y} + \varepsilon_{2y})}$$

Emittance Blow-up vs Brightness 2015

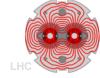


- o 25 ns fills: standard and BCMS
- o Comparison of emittance from luminosity and convoluted emittance measured at injection with wire scanners.
 - Errors include measured β^* , crossing and 10 % lumi uncertainty.
- o Only two fills with significantly higher brightness and higher ϵ blow-up.
 - Not enough statistics to conclude whether BCMS/ high brightness lead to more growth like IBS.

Convoluted ε:

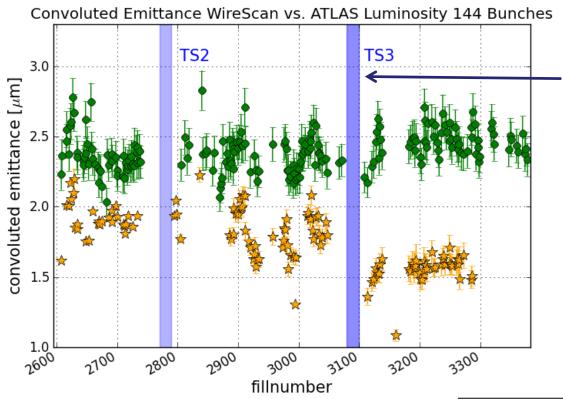
- Collision values from ATLAS luminosity
- Injection values from LHC wire scanners

$$\varepsilon = \frac{1}{2} \sqrt{(\varepsilon_{1x} + \varepsilon_{2x}) (\varepsilon_{1y} + \varepsilon_{2y})}$$


Summary & Conclusion

- o LHC beam profile measurement systems in the LHC in much better shape after LS1.
- o Emittance can be measured with accuracy better than 10 %.
- o IBS well describes ϵ growth measured in the horizontal planes for low intensity fills.
- o Unknown source of ε growth in the vertical planes.
- o Overall ε growth through the cycle for 25 ns beams:
 - 25 % on average (~ 0.5 μm).
 - IBS predicts ~ 5 % ϵ growth (0.1 μ m) for 2015 beam parameters.
 - Assuming 15 min average injection plateau length.
- o High brightness BCMS fill showed more overall ϵ blow-up than standard 25 ns.
 - But only data for only one fill.

BACK UP

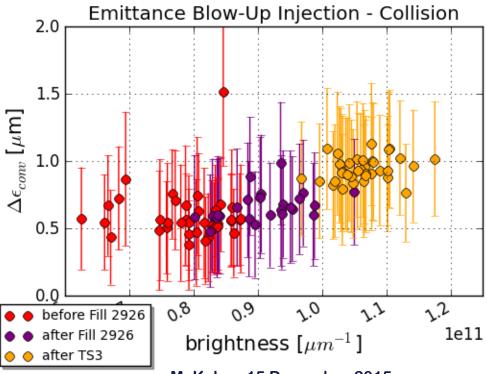

Reminder: 2012 Emittance Blow-up

- o In 2012 LHC was operated with high brightness beams.
 - Transverse emittance could not be preserved during the LHC cycle.
 - $\sim 0.4-0.9~\mu m$ normalized emittance growth from LHC injection to start of collisions for 50 ns physics beams.
 - But emittance measurement precision during LHC Run 1 doubtful.

Convoluted ε:

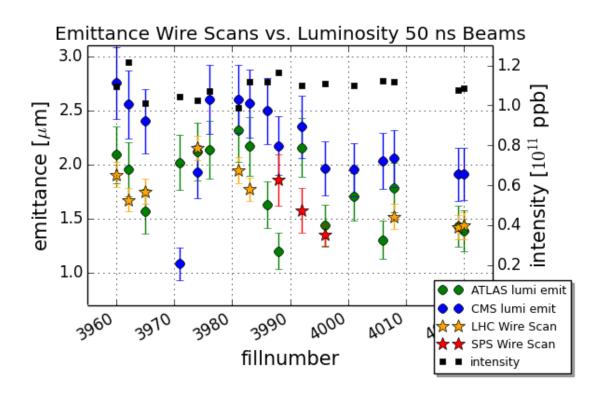
- Collision values from ATLAS bunch luminosity (similar for CMS values)
- Injection values from LHC wire scanners
- Average of first 144 bunch batch

After
Technical
Stop 3 (TS3):
very high
brightness
beams from
the LHC
injectors
lead to even
larger
emittance
growth!



Emittance Blow-up vs Brightness 2012

- o 50 ns standard fills (only stable bunches)
- o Comparison of emittance from luminosity and convoluted emittance measured at injection with wire scanners.
 - Errors include measured β^* and crossing angle uncertainty.
- o Brightness larger than for the 25 ns standard beams in 2015.
 - Emittance growth brightness dependent.



2015 LHC Performance with 50 ns Beams

- o Emittance in collisions derived from luminosity.
- o Injection emittance of first batch measured with SPS and LHC wire scanners.
- → 50 ns beams show very little ε blow-up through the cycle (~ 10 %), much smaller than during Run 1.

Damping/ Decoherence Times

- o Measured damping and decoherence times during MD3
 - With chromaticity 15 and octupoles 20 A

Time/Turns	B1H	B1V	B2H	B2V
decohrence	59	65	105	98
damping	25	21	35	27

G. Kotzian

