Luminosity modeling for the LHC

F. Antoniou, G. Arduini, M. Hostettler, G. Iadarola, Y. Papaphilippou, S. Papadopoulou, G. Papotti, G. Trad

Acknowledgements:
Beam-Beam and Luminosity studies working group, J.E. Muller, M. Lamont, R. Tomas, B. Salvachua, M. Solfaroli

EVIAN meeting, 15-17 Dec 2015
Outline

• Introduction: Luminosity
• Luminosity model components
• Luminosity performance: RunI Vs RunII
• Luminosity model Vs RunII data
• Optimal Fill times for 2016
• Summary and Outlook
Introduction: Luminosity

\[L = \frac{n_b f_{rev}}{2 \pi} \frac{N_{B1}(t)N_{B2}(t)}{\sigma_x(t)\sigma_y(t)} H \left(\frac{\sigma_s(t)}{\beta^*} \right) F_{geom}(\sigma_s(t), \beta^*) \]

\[\frac{1}{\tau_L} = \frac{1}{L \, dt} = \frac{1}{\tau_{N1}} + \frac{1}{\tau_{N2}} + \frac{1}{\tau_{\sigma_x}} + \frac{1}{\tau_{\sigma_y}} + \frac{1}{\tau_F} \]

- Model components:
 - Beam current decay with time
 - Beam size (or emittance) evolution with time

- Geometric Factor
 \[F_{geom} = \left(1 + \sqrt{\frac{\sigma_s(\varphi/2)}{\sqrt{\epsilon_t \beta^*}}} \right)^{-1} \]

- Hourglass effect
 - Very small for LHC params
 - Should be considered for HL-LHC params
Luminosity decay

- During stable beams the interplay between different effects affects the bunch characteristics evolution:
 - Intra-beam scattering, Burn-off, Synchrotron Radiation, Beam-beam, noise, other unknown mechanisms, ...
- Many of the effects depend on the initial bunch brightness
- Big spread in the bunch by bunch behavior is observed

⇒ We need a model that takes the bunch-by-bunch variations into account
Model components (1)

- **Emittance and bunch length evolution at Flat Top energy:**
 - **Intrabeam scattering (IBS):**
 - Multiple Coulomb scattering effect leading to the redistribution of phase space and finally to emittance blow up in all three planes

 \[
 \frac{d\varepsilon_i}{dt} = f(En, N_{b0}, \varepsilon_{x0}, \varepsilon_{y0}, \sigma_{l0}) \rightarrow \text{Analytical integrals}
 \]
 - Iteration in time as the beam characteristics are evolving
 - **Synchrotron Radiation (SR):**
 - At high energies becomes important for proton beams as well, leading to emittance damping in all three planes

 \[
 \varepsilon_i = \varepsilon_{i0} \exp\left(-\frac{t}{\tau_i}\right), \tau_i: \text{emittance damping time}
 \]

- **The emittance evolution** due to IBS and SR has been **fully parameterized**
 - The parameterization is based on MADX computations using the IBS module
 - Their effect in any plane can be calculated through a function:
 \[
 [\varepsilon_x(t_i), \varepsilon_y(t_i), \sigma_l(t_i)] = \text{ComputeIBSEmitEvoll}(En, N_{b0}, \varepsilon_x(t_0), \varepsilon_y(t_0), \sigma_l(t_0), \text{timestep})
 \]
Model components (2)

- Bunch intensity degradation
 - **Luminosity burn-off**: Luminosity decay due to the collisions themselves:

\[
\tau_{\text{nuclear}} = \frac{N_{\text{tot},0}}{L_0 \sigma_{\text{tot}} k}
\]

\[
N_{\text{tot}}(t) = \frac{N_{\text{tot},0}}{1 + t/\tau_{\text{nuclear}}}
\]

- \(N_{\text{tot},0}\): the initial beam intensity
- \(L_0\): the initial Luminosity
- \(\sigma_{\text{tot}}\): the total cross section
- \(k\) the number of interaction points

It can be easily folded into the emittance evolution function in order to have a self consistent evolution
Luminosity model summary

• The **basic model** includes the three main mechanisms of the transverse emittance, bunch length, bunch intensity and luminosity evolution due to **IBS**, **SR** and **Burn-off**

• It can be easily applied and compared with the data for **bunch by bunch** and averaged quantities studies
 - On going effort to find correlations from the data from average and bunch by bunch behavior (brightness, long ranges, losses, blow-up,...)

• Other sources need to be considered
 • Non-linearities of the machine
 • Noise effects
 • Scattering on residual gas
 • ...

Evian 2015
Luminosity performance: RunI Vs RunII

- 2015 configuration with **low bunch intensity**, low brightness and relaxed β^* results in:
 - Low peak luminosity
 - Long luminosity lifetime

- **Integrated luminosity** over a “typical” fill is very similar to what we used to get in 2012

2012 (4 TeV)
- 50 ns, 1380 b.
- 1.7×10^{11} ppb, 1.6 um (inj.)
- $\beta^* = 60$ cm

2015 (6.5 TeV)
- 25 ns, 1825 b.
- 1.1×10^{11} ppb, 2.5 um (inj.)
- $\beta^* = 80$ cm

Peak luminosity
- 2012 (4 TeV)
 - 7200 (ub.s)$^{-1}$
- 2015 (6.5 TeV)
 - 4500 (ub.s)$^{-1}$

Integrated luminosity (12h)
- 2012 (4 TeV, 50 ns) - Fill 3249
 - 0.18 fb$^{-1}$
- 2015 (6.5 TeV 25 ns) – Fill 4485
 - 0.17 fb$^{-1}$

G. Iadarola
Analyzing RunII data

- In Run II we have **emittance measurements both at Flat Bottom and Flat Top**
 - **BSRT** data for both beams and both planes
 - Convoluted emittance from luminosity from the **experiments**
 - Convoluted horizontal and vertical emittance from **OP scans**
- Comparison between the **different methods not always in good agreement**
 - Work in progress to understand the data
- The data were compared with the model predictions for all Fills that arrived at Stable Beams
Luminosity model Vs RunII data: Emittance @ SB

- Fill 4538 is used as an example here
- Emittance evolution (averaged) during SB from BSRT, Lumi ATLAS and Lumi CMS
 - Different evolution
- **Blow up** observed, with respect to the model
- We need to understand the data and include other sources of emittance blow-up
Luminosity model Vs RunII data: Bunch current & bunch length @ SB

- Smoother current decay and more bunch length damping is observed with respect to the model prediction.
Luminosity model Vs RunII data: Bunch current & bunch length @ SB

- Smoother current decay and more bunch length damping is observed with respect to the model prediction.

- Using the **emittance evolution from the data (mean)** → **Very good prediction** for the current and bunch length evolution.

- Identify and add other sources of emittance evolution to the model is very important!

- The emittance blow up results in an **integrated luminosity reduction of the order of 20%**.
Optimal Fill times for 2016

- 2016 proposed parameters:
 - $\beta^*=40$ cm in IP1/5
 - 410 μrad (11 σ) or 370 μrad (10 σ) in IR1 and 5
 - Similar bunch brightness and bunch length as in 2015 (1.2×10^{11}, 3μm, 1.3ns)

- Most probable turnaround time (based on 2015) of 6-8h (see M. Solfaroli)

- Using different emittance evolution scenarios (based on 2015 observations)
 - Long Fills are favorable
 - For 6h prep. Time: 18-20h
 - For 8h prep. Time: 22-24h
 - For 4h prep. Time: 13-15h
Summary and Outlook

- A model including IBS, SR and Burn-off at Flat Top (4TeV, 6.5TeV and 7TeV) and Flat Bottom energy is ready
 - Can be easily applied bunch-by-bunch

- The model is based on analytical formulas which assume Gaussian distributions
 - This is not always the case for the LHC (especially in the longitudinal plane)
 - Work in progress to understand the effect of the beam distribution on the IBS evolution of the bunch characteristics (S. Papadopoulou)
Summary and Outlook

- Observations from RunII data:
 - Differences have been observed on the emittance evolution from the different methods of measurement → Need to be understood
 - Using the emittance from the data, good prediction for the bunch length and bunch current evolution
 - Modeling the emittance evolution is a very important component of the model
- Based on the model and the observations, in 2016 long Fills should still be favorable
- Bunch-by-bunch analysis is in progress
 - Aims to identify correlations between the observed emittance blow-up and the bunch “lifestyle” (brightness, long-ranges, etc..)
THANK YOU FOR YOUR ATTENTION!