

LHC aperture and ULO restrictions: are they a possible limitation in 2016?

D. Mirarchi, R. Bruce, M. Giovannozzi, P. Hermes,
S. Redaelli, B. Salvachua, G. Valentino, J. Wenninger

Special thanks to BE-OP for the support during measurements, and to BE-ABP for internal discussions

Evian, 15 th December 2015

Introduction

- Available machine aperture crucial parameter for the LHC operations:

L
> At 450 GeV : historical concerns on tight aperture design in superconductive magnets
$>$ At 6.5 TeV: reach in β^{*} strongly connected with triplet aperture

- Precise knowledge of available aperture crucial to push machine performance
- Adequate protection of bottleneck has to be ensured at any time by the collimation system

Margins on collimation hierarchy rescaled to ensure the best cleaning and machine protection performances (see Roderik's talk on Thursday)

Thus:
\checkmark Aperture measurements performed every year during machine commissioning (and MD)
\checkmark Significant UFO activity in cell 15R8 triggered various studies that revealed the presence of an unexpected restriction: Unidentified Lying Object

Outline

> ULO:
\checkmark ULO evolution in 2015
\checkmark Where are we now?
\checkmark How can we deal with it in 2016?
\checkmark UFO at the ULO feature, activity and monitoring
$>$ Overview of 2015 aperture:
$\checkmark 450 \mathrm{GeV}$
\checkmark Proton physics: 80 cm and $40 \mathrm{~cm} \beta^{*}$
\checkmark Ions configuration
> Conclusions

Outline

> ULO:
\checkmark ULO evolution in 2015
\checkmark Where are we now?
\checkmark How can we deal with it in 2016?
\checkmark UFO at the ULO feature, activity and monitoring
> Overview of 2015 aperture:
$\checkmark 450 \mathrm{GeV}$
\checkmark Proton ohysics: 80 cm and $40 \mathrm{~cm} \beta$
\checkmark Ions configuration
> Conclusions

Motivations

\checkmark Significant UFO activity in cell 15R8 during machine commissioning (14 dump, 3 quench)
Energy dep. studies indicated vertex of hadronic showers in MB.15R8.B2 (A. Lechner)
\checkmark Several scans of local aperture performed (12 between April and May)
\square Revealed presence of an Unidentified Lying Object
\checkmark Investigations on beam loss at the ULO location rely on three main observables:

- Dedicated local aperture measurements
- Analysis of UFOs at the ULO location
- Parasitic monitoring of beam losses during standard cycles

Measurement procedure

4 correctors bump in V plane

3 correctors bump in H plane

Local aperture scan

- Was it there from the beginning of Runll?

\longrightarrowInitial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?

\longrightarrowInitial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?
\Rightarrow Initial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?

\longrightarrowInitial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?

\longrightarrowInitial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?
\Rightarrow Initial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?

\longrightarrowInitial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?

\longrightarrowInitial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

Local aperture scan

- Was it there from the beginning of Runll?
\longrightarrow Initial though: something frozen on the top of the beam pipe fallen due to warm up Answer: YES, it was there on the bottom but seems grown after the first warm up

ULO restriction in May 2015

Vertical restriction not constant: typically 13-14 σ at injection, but in a few cases less than 8σ Horizontal position of ULO stable: deployed local orbit bumps

No obvious limitations in operations (losses, collimation cleaning) after bumps were deployed
Checked correlations with: intensity, energy, present and previous machine mode \square

ULO restriction now?

- Local aperture scan repeated with protons $(15 / 11)$ and lead beams $(10 / 12)$

Consistent results obtained: vertical dimension increased

- What if it keep growing is 2016?

UFO at the ULO

Fixed bump deployed

Parasitic monitoring of beam losses

- Clear loss spikes (i.e. exp. decay and peak > 1e-6 Gy/s) looking at 1.3s BLM running sum
\qquad Most of them synchronised with injection or inj. cleaning

Outline

ULO:

\checkmark ULO evolution in 2015

\checkmark Where are we now?

\checkmark How can we deal with it in 2016?
\checkmark UFO at the ULO feature, activity and monitoring
$>$ Overview of 2015 aperture:
$\checkmark 450$ GeV
\checkmark Proton physics: 80 cm and $40 \mathrm{~cm} \beta^{*}$
\checkmark Ions configuration
> Conclusions

Global aperture at 450 GeV

Global aperture measurements allows to identify machine bottleneck:
$>$ Only TCP in place and opened in steps of 0.5σ
> Gentle ADT blow up at each step, until losses on aperture are observed

Global aperture at 450 GeV

Global aperture measurements allows to identify machine bottleneck:
$>$ Only TCP in place and opened in steps of 0.5σ
> Gentle ADT blow up at each step, until losses on aperture are observed

Local aperture at 450 GeV

Local aperture measurements are performed at bottleneck found with global measurements:
> Beam are shaped with TCPs at 4σ and available aperture probed with local bumps

Summary of bottleneck combining smallest global and local aperture measurements:

	2015		Run I	
	A [$\sigma]$	Element	A [$\sigma]$	Element
B1H	11.6	MBRC.4R8	11.5	Q6R2
B1V	12.4	Q6L4	12.0	Q4L6
B2H	13.0	Q4L6	12.5	Q5R6
B2V	12.7	Q4R6	12.5	Q4R6

MQX aperture at 6.5 TeV

- Measurements performed with squeezed and colliding beams, 80 cm and $40 \mathrm{~cm} \beta^{*}, \mathrm{p}$ and Pb
- Similar approach of global aperture at Injection:
$>$ Only TCTs in place and opened in steps of 0.5σ
$>$ Gentle ADT blow up at each step, until losses moved from TCT to MQX

Summary of triplets aperture measurements with squeezed beams:

	Protons		
	$\boldsymbol{\beta}^{*}=\mathbf{8 0} \mathbf{c m}$ Xing $=145 \mu \mathrm{rad}$	$\boldsymbol{\beta}^{*}=\mathbf{4 0} \mathbf{c m}$ Xing $=\mathbf{2 0 5} \boldsymbol{\mu r a d}$	$\boldsymbol{\beta}^{*}=\mathbf{8 0} \mathbf{c m}$ Xing $=\mathbf{1 4 5} \boldsymbol{\mu r a d}$
B1H	16.7	11.0	>15.5
B1V	15.7	9.5	14
B2H	>18.7	10.0	>15.5
B2V	15.7	9.5	14

Good agreement with predictions: 15.9σ with $80 \mathrm{~cm} \beta^{*}, 9.5$ with $40 \mathrm{~cm} \beta^{*}$ (R. Bruce, Chamonix '14)

Outline

HC Collimation\checkmark ULO evolution in 2015
\checkmark Where are we now?\checkmark How can we deal with it in 2016?\checkmark UFO at the ULO feature, activity and monitoring
> Overview of 2015 aperture:
$\checkmark 450 \mathrm{GeV}$$\checkmark$ Proton physics: 80 cm and $40 \mathrm{~cm} \beta^{*}$
\checkmark Ions configuration
> Conclusions

Conclusions

- Unidentified Lying Object:
\checkmark Present since beginning of 2015 and maybe earlier (different BLM positions in Runl)
\checkmark Although initial concerns (14 dump, 3 quench) it was not a main limitation in 2015
\checkmark Fixed bump to "by-pass" the object beneficial on UFO rate and beam loss
\checkmark Hard to predict situation in 2016: lack understanding the nature of the ULO
\checkmark Still room to increase fixed orbit bump to get a least 10σ at 450 GeV in worst scenarios
Crucial to perform local scan during 2016 commissioning to set optimum orbit bump, plus periodic beam loss monitoring and ULO scans to avoid any limitation to LHC operations
- Available machine aperture:
\checkmark At $450 \mathrm{GeV}: 11.5 \sigma$ for B1V
\checkmark At $6.5 \mathrm{TeV}: 15.7 \sigma$ with $80 \mathrm{~cm} \beta^{*}, 9.5 \sigma$ with $40 \mathrm{~cm} \beta^{*}$, for both beams in V
\checkmark With lead beams: 14σ for both beams in V
Required aperture measurements in 2016 commissioning to check bottleneck evolution and to avoid any limitation to LHC operations

Outline

BACKUP

UFO at the ULO

Is there any particular feature of UFOs in C15R8 w.r.t. UFOs in the rest of the ring?
Comparative analysis between:
\checkmark All the dumps due to UFOs at the ULO, UFOs in the machine, and programmed dump

FFT of BLM that detected the UFO using PM data

Characteristic FFT: UFOs in cell 15R8 generated by repeated passage of the beam on the ULO

Stored energy in the machine

Example of multiple UFO at the ULO

Beam loss at the ULO

Timeseries Chart between 2015-07-02 20:00:00.000 and 2015-07-02 20:50:00.000 (LOCAL_TIME)
\rightarrow BLMBl.15R8.Bot20_MBA-MBB:LOSS_RS09 LHC.BCTFR.Agra.B2:BEAM_INTENITY

Beam 2 loss maps

Betatron loss B2 450 GeV Vertical 2015-4-26 15:13:28

The most weird measurement...

Seems that we touched something with very small shift...but...

