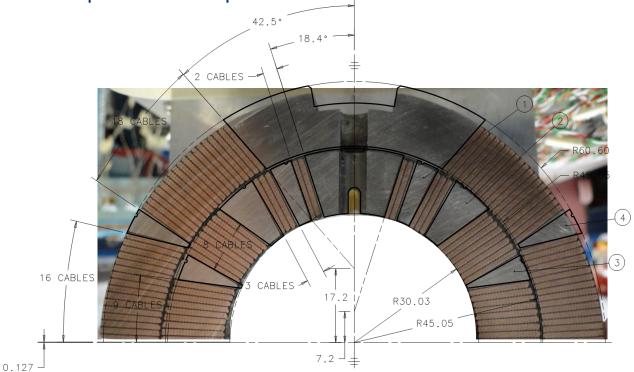
FNAL Technological Choices; Cable Insulation and Coils

Fred Nobrega, Nikolai Andreev

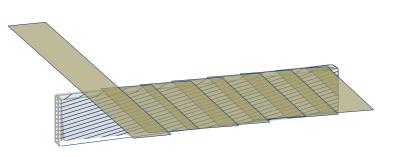
21 September, 2015

Outline


- Coil Parameters
- Cable insulation choices
- Coil Technology and Fabrication
- Coil size analysis
- Coil end part modifications
- Summary

Coil Parameters

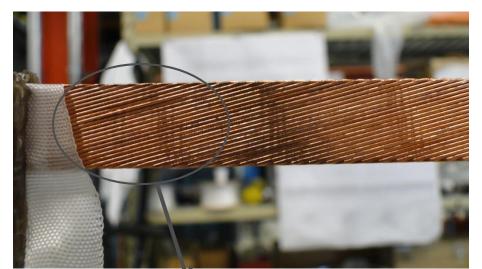
- The coil has:
 - 56 total turns, 22 inner, 34 outer
 - 3 inner layer wedges and 1 outer layer wedge, SS
 - SLS end parts, SS, provided by CERN
 - Splice-less layer jump transitions between the inner and outer coils.
 - Cable & wedge insulation 150 μm thick
 - Glued pole blocks
- Alignment notch in L2 pole pieces
- Nb₃Sn cable expansion from phase transformation ~3% thickness & ~1% width

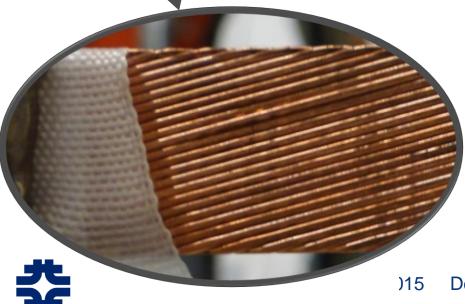


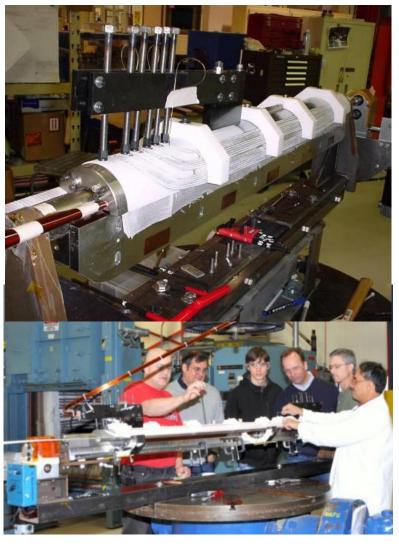
G

Cable insulation choices

- Cable & wedge insulation half lap, using 75 μm thick E-glass
- Cable test stack program: mechanical, thermal and electrical testing of stacks at room temperature and 4.5 K using cables of various types.
- The cable insulating line have been used in IB3 for all short models since the Tevatron.





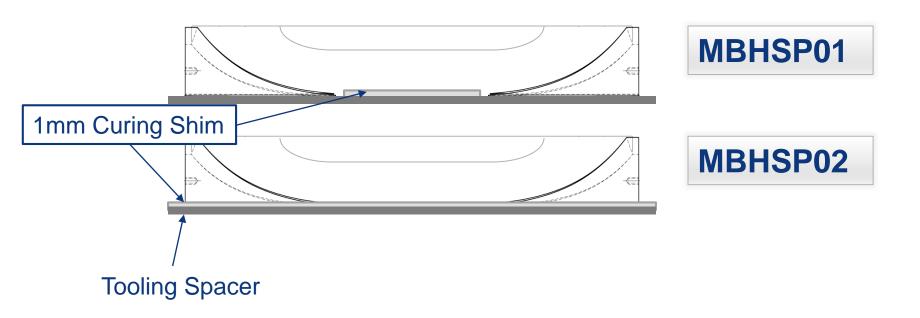

Cable Mechanical Stability, MBH08

Coil Technology - Winding

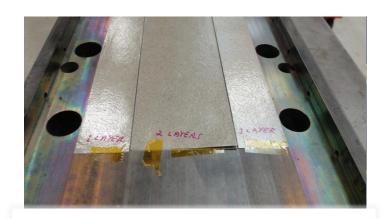
- Rotating winding table is used.
- Coil winding tensions is ~156 N.
- Pole gap is maintained during winding and curing.
- Stored coil winding tension is near zero prior to reaction.
- CTD-1202X ceramic binder used during winding of end turns to support cable to help prevent popped strands and cable collapse.
- Binder applied to entire coil prior to curing of each layer.
- Outer coil layer is wound on cured inner layer.
- Coil end part surface is leveled to cylindrical shape with use of fiberglass paste and cured
- Interlayer insulation is cylindrical shaped and cured before installation.

21-23 Sep 2015

Coil Technology - Curing


- Cure cycle for coil with CTD-1202X ceramic binder is 150° C for 30 min. at ~27MPa.
- Straight part of the coil is compressed with 1 mm midplane curing shim. Shim size is approximate sum of cable expansion during reaction and used to pre-compress insulation with binder.
- Coil end parts and saddles area – without curing shims

Curing Shim Change End Part Modification


21-23 Sep 2015

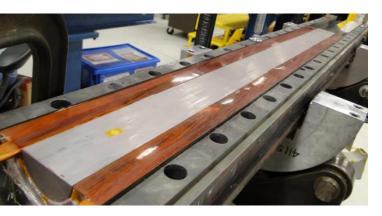
Coil Technology - Reaction

Coil preparation to reaction:

- Install two layers of 0.125 mm MIKA all around coil surfaces inside reaction fixture,
- Cured coil has smaller cross-section dimension than reaction fixture for free expansion and fixture must be completely closed by bolts.
- Coil leads are supported by slots of fixture.

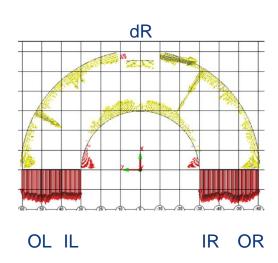
Reaction cycle is in an argon atmosphere and :

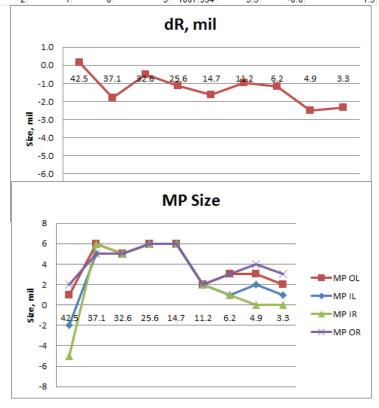
- at 210° C for 72 hours,
- at 400° C for 48 hours
- and 640° C for 48 hours.


The heat treatment lasts about 9 days including ramp up and cool down.

Coil Technology - Impregnation

- Coil preparation to impregnation:
- Splice NbTi leads to Coil leads and insulate them by 0.125 mm Kapton,
- Splice voltage taps to coils accordantly,
- ✓ Put strip heaters on outer surface of coil,
- Put 0.125 mm fiberglass cloth on outer and inner coil surfaces.
- ✓ Put 0.125 mm mold/released Kapton in midplane.
- Mold release all part of impregnation fixture, close it with bolts and seal by O-rings with RTV.
- Impregnation is with CTD101K and is done in the IB2 vacuum oven at 30-50 µm Hg with epoxy temperature of 60° C.
- Curing of the impregnated coil is done in a different oven at 125° C for 21 hours.

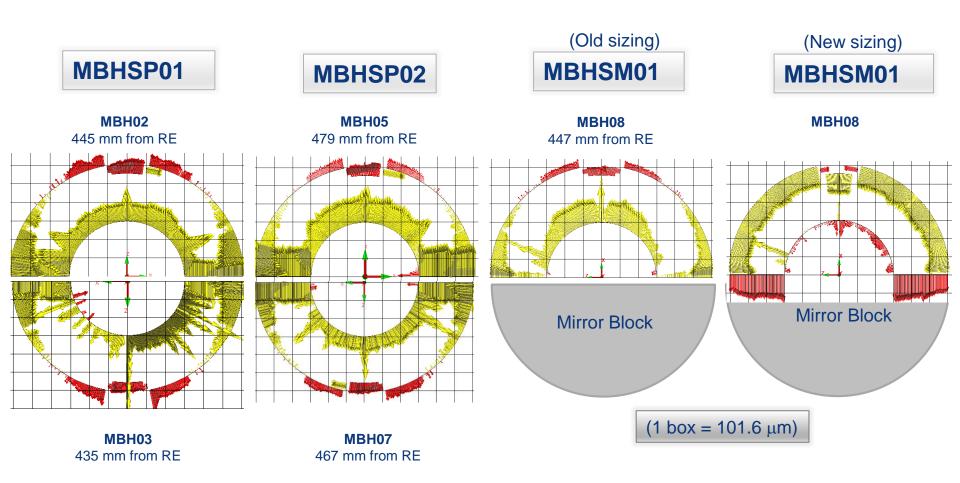




Coil Size Measurement by CMM

#11													
QC Data	Rc	Raundness	Rd	dR, mm	dR, mil	MP OL	MP IL	MP IR	MP OR	L, mm	L, in	Size avr	dMP avr, mil
1 RE saddle	60.731	0.138	60.727	0.004	0.2	1	-2	2 -5	5	2 11.633	42.5	-0.8	-1
2 RE Pole	60.681	0.19	60.727	-0.046	-1.8	6		5 6	6	5 150.285	37.1	3.7	5.5
3 SS	60.714	0.119	60.727	-0.013	-0.5	5	5	5 5	5	5 264.125	32.6	4.5	5
4 SS	60.698	0.108	60.727	-0.029	-1.1	6	(6	i	6 442.775	25.6	4.9	6
5 SS	60.686	0.28	60.727	-0.041	-1.6	6	6	6	i	6 720.08	14.7	4.4	6
6 LE Pole	60.702	0.256	60.727	-0.025	-1.0	2	2	2 2	2	2 807.611	11.2	1.0	2
7 LE saddle	60.697	0.11	60.727	-0.03	-1.2	3	1	1 1		3 935.475	6.2	0.8	2
8 SP	60.664	0.092	60.727	-0.063	-2.5	3	2	2 0)	4 966.981	4.9	-0.2	2.25
9 SP	60.668	0.16	60.727	-0.059	-2.3	2	1	1 0)	3 1007.994	3.3	-0.8	1.5

Size of Coil #11



Coil size analysis

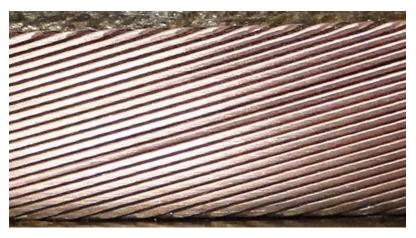
Cross Section #4 at 447.026mm from RETURN END 75 μm removed from OD during $(1 box = 101.6 \mu m)$ potting **MBH10** MBH08 MBH09 13 21-23 Sep 2015

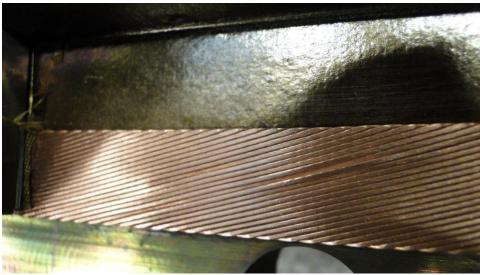
MBHSP01 Autopsy

MBH03 Used in MBHSP01. Strand spacing observed in MBH04.

Reacted MBH04 (scrapped)

Later potted w/MATRIMID

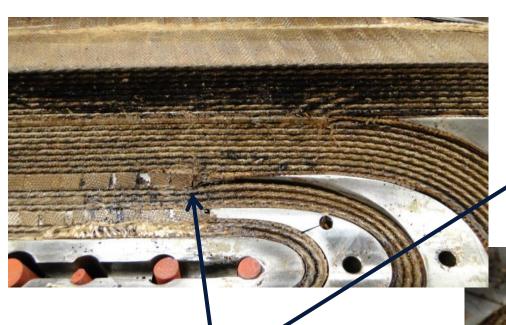




Coil Leads, MBH08

Coil End Parts Modifications

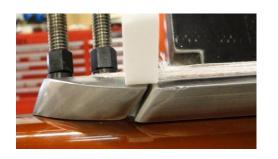
- MBH04 (2m) with 3mm gap after reaction, spacers not modified.
- MBH05,07 & 08 (1m) Spacer legs shortened by ~ 30 mm and modified for easy installation; gaps after reaction are reduced to ~ 1mm.
- All coil end part gaps are filled with a fiberglass before impregnation



Gaps between cable and end parts filled with S2-glass.

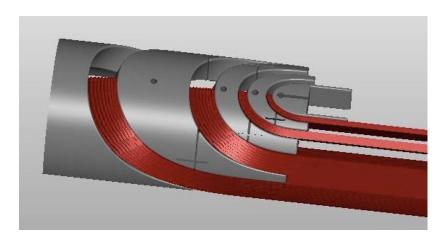
Coil Fabrication, MBH08

Luminosity 21-23 Sep 2015



Modifications for Coils #9 & 10

- Coil end parts have been modified by shortening legs with an angle; (minimizing spacer machining for installation)
- Modified wedges were cut to the corresponding spacer angle too



End Part Designs for MBH11-15

21-23 Sep 2015

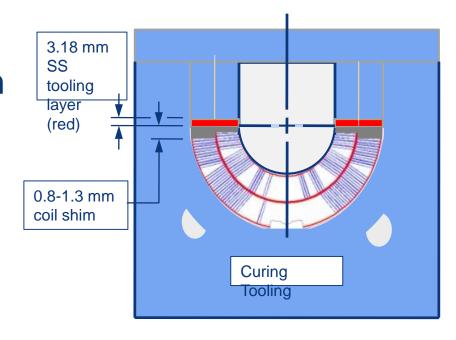
Coil Fabrication MBH11-12

- Use tooling end saddles for curing → use nominal design saddle for reaction
- Add ceramic binder for each end turn → added cable stability
- Use flexible leg end parts with holes > minimizes end part modifications
 - → improved cable support
 - → lower effective end part modulus
- Increase impregnation radial space by 75 μm → increased coil radius by ~60 μm
- Continue with shimming react/impreg tooling → increases tooling volume for coil

Summary

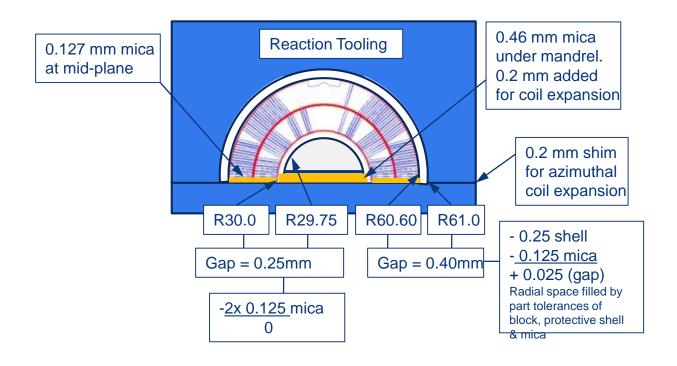
- 10 magnet coils have been fabricated (2x 2 m, 8x 1 m)
- Coil fabrication improvements:
 - Process
 - End parts
- All fabrication technologies & results shared with our collaboration partners

APPENDIX

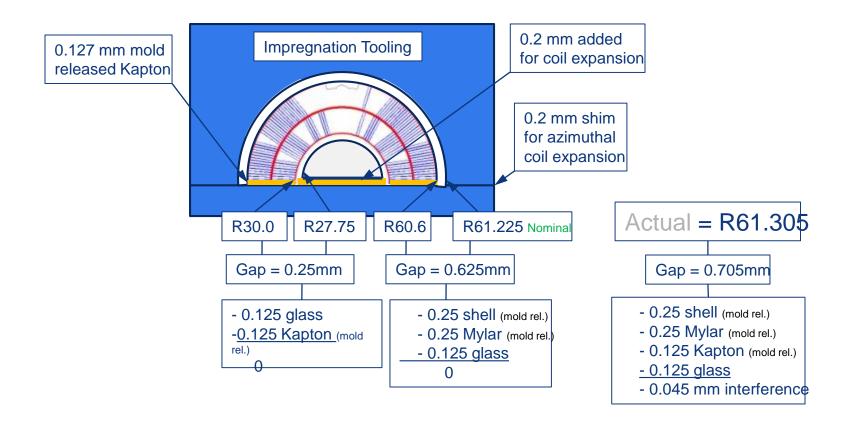

- Coil Curing
- Reaction
- **Impregnation**

Coil Curing

- Layer 1 = 21 turns
- Layer 2 = 35 turns
- Winding cable midthickness = 1.269 mm
- Mid-thickness expansion during reaction = 3%
- 3% of 1.269 is 0.038
- 21 turns = 0.8 mmshim
- 35 turns = 1.3 mmshim



Reaction Tooling



Impregnation Tooling

