
How To Write 
Bad Code

Axel Naumann, CERN PH-SFT 
Openlab Summer Student Lectures, 2015-08-04



Bugs!



Why Axel?

• Because I can write expert-level bad code.



Why Axel?

• 10 years of ROOT development: the tool for every 
physicist’s analysis 

• Member of the C++ committee 

• Introduced static analysis tool at CERN



Your Place, Your Language

• Part of XYZ or on top of XYZ (or replacing XYZ!) 

• “community” knowledge 

• your knowledge 

• practicality



Practices
• More than one dev or more than one user: need to 

agree on “how” 

• CERN has decades of piles of code, lessons 
learned: 

1. be reasonable! 

2. enforce! 

3. fix rules early, adapt slowly



Best Practices



Best Practices
• Don’t follow today’s best Best Practices blindly 

• it will be ridiculed in a month anyway 

• But having them is simpler than arguing for / 
reminding of each rule’s motivation 

• See e.g. Bjarne Stroustrup @ CppCon  
http://sched.co/3vVp

http://sched.co/3vVp


Motivation
• Simpler, consistent read 

• improved communication with fellow coders 

• less ambiguities means more correct code 

• Less bugs; better maintenance 

• Best practices win against experimental coding



Menu Du Jour
• Coding convention 

• Interface jargon 

• Change management 

• Multi-platform support 

• Tests: code-correctness, functionality, static 
analysis, performance



Disclaimer

• I am not your best practices superhero 

• Focus on C++ 

• experience, usage, need



Coding Convention



Coding Convention

• What is this? 
	   func(val);



Coding Convention
• It’s a counter-example! 
	   func(val);	  

• func: Member function? Data member / function 
pointer? Some global function pulled in from 
header? 

• val: local variable declared 100 lines up in the 
same function? Or member? Or enum constant? 
And where can I find it’s declaration?



Coding Convention
	   fFunc(fgVal);	  	  

• It’s ROOT - you can tell from the names! 

• It’s a function call 

• fFunc is a member - so it’s a function pointer! 

• fgVal is a static data member; must be in same 
class (or base)



Coding Convention

• Obvious case of improved clarity 

• For APIs, user friendly: 

• get_track(), getTrack(), GetTrack() - or Track()? 

• Almost all projects employ it



Coding Convention
• Typical current examples for C++: 

• Joint Strike Fighter Air Vehicle C++ Coding 
Standards 

• MISRA C++ 

• Both absurd for reasonable environments 

• Both have very reasonable ingredients: pick yours!



Coding Convention

• Enforcing needs checkers 

• Non-trivial; checker must understand C++: what is 
a function, what is a member etc 

• Many C-coding convention checkers (indentation!), 
few C++, even less open source



Interface Jargon



Interface Jargon



Interface Jargon
• Consistency - we know that already 

• Safe code through good APIs! 

• unique_ptr / shared_ptr instead of Type* where 
ownership is managed; never require “new 
Type()”, “delete var” 

• document also parameter pre- and post-
condition: arg1 must be != 0; arg2 will contain…



Interface Jargon
• Maintain common idioms throughout API; example 

C++ std library: 

• iterators; functor; make_XYZ; allocator etc 

• Don’t screw with your users 

• if interface looks like A, don’t make it do B even if 
it’s better for you. Change the interface instead.



Threading Support
• Different levels 

• starts threads to compute faster [multithreaded] 

• function can be used on same object in multiple, 
concurrent threads without side-effects [reentrant] 

• function can be used on different objects in multiple, 
concurrent threads without side-effects (no statics) 

• must be locked when accessed through multiple 
threads [no threading support]



Threading Support
• All kinds need to be clearly documented 

• Reentrant part of API needs to be visible 

• Common contract nowadays: 

• const API means it’s reentrant: no unlocked 
mutables! no caches! no hidden state changes! 

• no unlocked static variables! State is passed as 
arguments



Threading Support
• Thus threading support is to a large extend 

interface jargon 

• This is work in progress; has changed rather 
recently 

• expect further changes; constexpr might play a 
bigger role soon 

• exposing to >64 threads might change 
requirements (Amdahl’s law!) + style



Interface Jargon + 
Threading Support

• Automated checking (beyond coding convention) 
almost impossible 

• requires design work / understanding of the 
interfaces 

• Employ change management instead!



Change Management



Change Management
• Monitor by a second pair of eyes: two brains are 

better than one 

• Avoids bugs creeping in 

• Also exposes code, new features to additional /
backup developers 

• Exposes changes to larger horizon: we all think of 
changes in different contexts



Change Management



Change Management
• Pre-publication 

• package tags / tag collector (dying concept); 
instead: change merge as package owner action 

• formalized patch review 

• pair programming 

• Post-publication 

• commit review by package owner



Lessons at CERN
• If it works, it will break 

• new OS version, new compiler version, new 
language version 

• Only way out: embrace change 

• put procedures in place to survive change 

• benefit from it instead of mitigating it



Multi-Platform Support



Multi-Platform Support
• Problems: 

• big- versus little-endian 

• OS API 

• lack of language support in compiler 

• Developers will get a feeling for what’s causing 
problems



Multi-Platform Support
• Advantages 

• general robustness 

• easier to follow architecture changes 

• will x86_64 be the instruction set of 2030? 

• more compilers = more opinions on code, more 
warnings (that’s a good thing!)



Multi-Platform Support

• Checking by building on many platforms, regularly 

• Code Correctness Tests!



Tests





Code Correctness Tests
• Large matrix of builds 

• build on all supported platforms 

• build with all supported configurations 

• Ideally after every change 

• helps pinpoint culprits 

• Current common grounds: the HEAD works.



Code Correctness Tests
• Run build (incremental or full) 

• check for errors versus platform 

• also check for warnings! 

• Run tests 

• Build snapshot binaries 

• continuous delivery or bug fix verification



Code Correctness Tests
• Needs automation 

• Typical tools: Jenkins / Hudson; Bamboo; 
TeamCity; BuildBot; Electric Commander 

• schedule and initiate build on all required 
machines 

• collect output; filter errors, warnings 

• report (web, email) versus code revision



Functionality Tests
• “Does my software actually work?” 

• Science by itself; ingredients: 

• unit tests; regression tests; integration tests 

• rules when to write a test 

• testing libraries: cppunit / Google’s 5 or so / CTest 

• Needs automation!



Topical Tests

• Memory error checkers - use after free / before 
initialization 

• e.g. valgrind 

• Thread error checkers 

• e.g. hellgrind



Static Analysis
0:	  int	  func(char*	  buf)	  {	  
1:	  	  strcat(buf,	  “<default>”);	  
2:	  	  int	  pos;	  
3:	  	  if	  (buf[0]	  !=	  ‘<’)	  {	  
4:	  	  	  	  std::cout	  <<	  “Number	  between	  0	  and	  8:\n”;	  
5:	  	  	  	  std::cin	  >>	  pos;	  
6:	  	  }	  
7:	  	  buf[pos]	  =	  0;	  
8:	  	  if	  (!buf)	  return	  -‐1;	  
9:	  	  return	  pos;	  
	  	  	  }	  

• What’s wrong in this snippet? (I see 5 errors.)



Static Analysis

• Analyzes source code without running it; creating 
branch graph to follow possible if etc combinations 

• Finds use after delete; impossible if conditions; 
memory errors etc



Static Analysis
• Several tools out there, for instance 

• basic checker: compiler warnings! 

• clang static analysis 

• Coverity 

• Differ in set of bugs checked; tracing capabilities 
(through function calls etc); user interface; false 
positive rate



CERN Lessons

• Cannot be replaced by test suite: it tests the things 
that “never happen” 

• Improves code stability 

• Developers feel “watched”: improves overall code 
quality



Performance Test
• Changes can deteriorate performance: 

• takes more CPU cycles to get an answer 

• takes more RAM 

• takes more I/O operations 

• takes more disk space 

• Criteria vary depending on product



Performance Test

• Usually part of release baking 

• Better yet: automate 

• Problem: which changes are intentional? 

• Tools vary with criteria; e.g. cgroups; massif; 
CDash





100%



Current Challenges

• Massive multi-threading 

• Data-oriented programming 

• C++11 and up 

• Move every tool into the FOSS world



Conclusion (1/4)

• Good software development is an art by itself 

• complex; many aspects; need to juggle many 
tools and often conflicting goals 

• Not a reason to avoid it, but needs brain energy



Conclusion (2/4)

• Using tools pays off: 

• 1 hour more work for one dev can mean 10 
minutes saved for 10k users each 

• users will trust your software more



Conclusion (3/4)
• Review procedures 

• cover all aspects: runtime+ performance tests, 
static analysis - none of that is optional 

• automatize 

• adjust developers’ pain to increase acceptance 

• Write good code! 



Conclusion (4/4)

• Write good code! 


