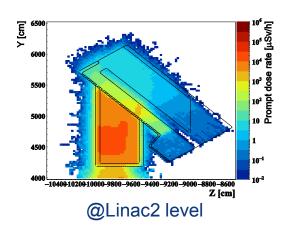
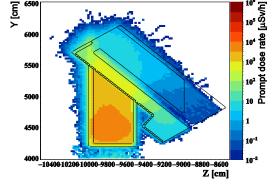
Updated results of the radiological study for HST @ L4

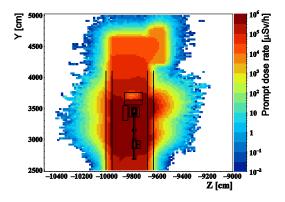
Marcus M. Morgenstern
DGS-RP-AS
LIU-PSB meeting
- August 6th, 2015 -

Introduction

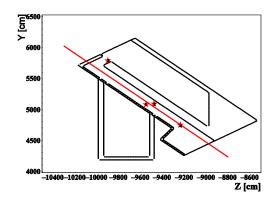
- Performed calculation assuming 98% striping efficiency
- Updates w.r.t. presentation of June 18th
 - Updated shielding and dump materials (thanks to D. Grenier)
 - Minor changes in the simulation
 - Study of accidental case of foil break (should this be considered?)
 - Design objectives:
 - 53.31 W beam power
 - 98% striping efficiency (i.e. 2% of beam dumped in internal dump)


Aim:


- Study radiological assessment for HST to fulfil safety requirements
- Prompt and residual dose rate maps for updated shielding
- Determine the maximum intensity that can be delivered to the beam dump


Prompt dose rate maps

Linac4/Linac2 junction



@Linac2 amplifier gallery

Linac4 tunnel

Linac2 tunnel accessible during Linac4 operation

- Prompt dose rate seems similar to previous study
- Prompt dose rates shown **not** for design objective, but
- 445 W and 98%
 striping efficiency
 - see next slide

Prompt dose rates

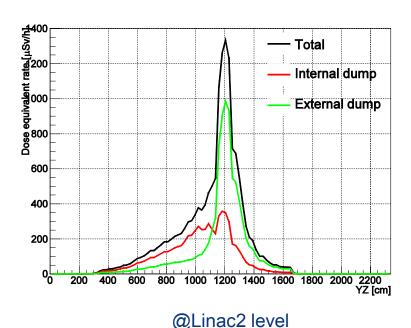
During L2 operation current dose rate @ PAXLN202 is about 10 μ Sv/h

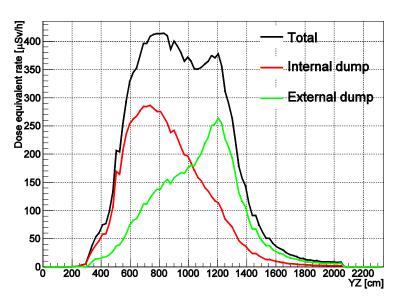
Close to current warning level threshold corresponding to Permanent Workplace Simple Controlled Radiation Area

Classify area outside fenced area as Low Occupancy Simple Controlled Radiation Area (EDMS 1376031)

Warning/Action threshold: 50/100 μSv/h

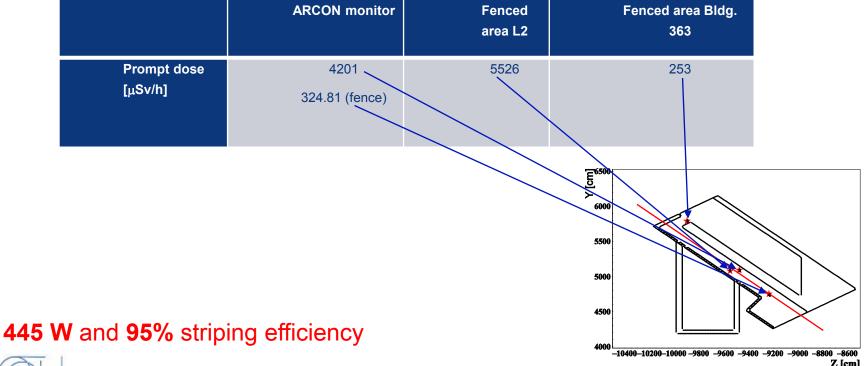
Area classification			Permanent workplaces		Low-occupancy	
			Warning	Action	Warning	Action
Non-d	esignate	d Area		Guideline EM	IDS 788938	
	Superv	ised Radiation Area	3 μSv/h	6 μSv/h	15 μSv/h	30 μSv/h
Area	eg.	Simple Controlled Radiation Area	10 μSv/h	20 μSv/h	50 μSv/h	100 μSv/h
Radiation Area	Controlled Radiation Area	Limited Stay Area	•	-	not pre	defined
Rad	Cont	High Radiation Area	-	-	not pre	defined
		Prohibited Area	-	-	not pre	defined


With this design objective, i.e. assuming low occupancy and **98%** striping efficiency, the maximum beam power can be increased to **445 W**


	ARCON monitor	Fenced area L2	Fenced area Bldg. 363
Prompt dose [μSv/h]	303.27 25.0 (fence)	361.4	6.69
P3 - Lines 2 Aurres od (x3. 11) 170615 100231 Workstation D First registed 100	118 \$\phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \phi \qua		<u>E</u> 5000

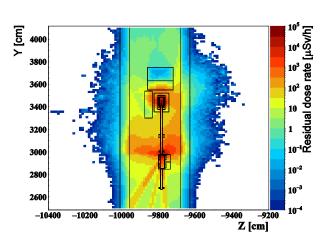
Prompt dose rate profiles

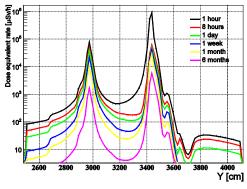
- Profile prompt dose rate along imaginary plane indicated by red line on previous slide
- At L2 level contribution comes roughly by same amount from internal and main beam dump, while at amplifier gallery level the prompt dose is dominated from internal dump contribution


@Linac2 amplifier gallery

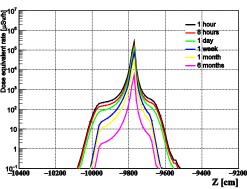
445 W and 98% striping efficiency

Accident case: striping foil break


- In case of a break of the striping foil the entire beam will be dumped in the internal dump
- Calculate prompt dose at different radiation monitors for this case



Residual dose rate profiles


- Profile residual dose rate for all cooling times along the beam line (and in 1m distance) as well as transverse to the beamline at the dump positions
- Residual dose rates are calculated with the following design objectives:
 - 445 W and 98% striping efficiency
 - 2 month low intensity run (5.33 W) followed by 2 month high intensity run (445 W)
- Need to work out new irradiation profile

1w cooling time

Along beamline

1 month Z [cm] Main dump

Along beamline @ 1m distance

Radiological stu

Internal dump

Conclusion/Outlook

- Study has been updated including updates on the shielding materials
- Prompt and residual dose rates have been evaluated
 - Including profiles
 - Considered accident case of striping foil break
- According to design objective (low occupancy area and 98% striping efficiency) the maximum beam power can be increased to 445 W
- 95% striping efficiency is very conservative, could be repeated with 98% or even higher
- 325 W beam power might not be feasible for the entire operation period (leads to high residual dose rates and thus long cooling time)
 - Should discuss alternative operation pattern
- Documentation (Engineering specification) under internal review

