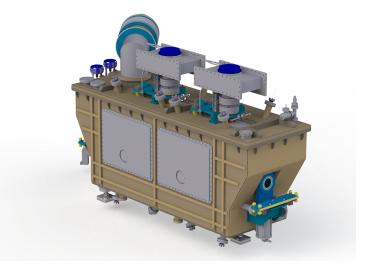
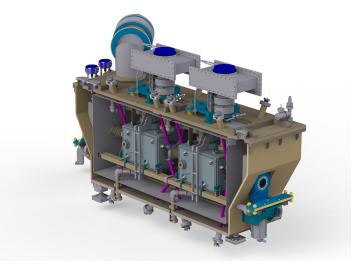
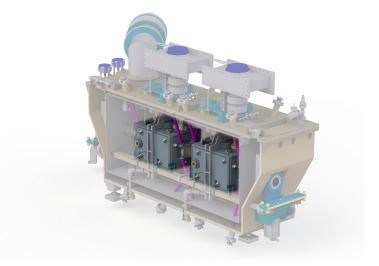


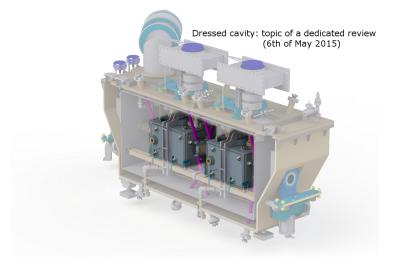
Helium Vessel Design, Prototyping and Tests

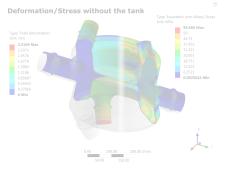

Carlo Zanoni on behalf of the Crab Cavity Collaboration


Outline

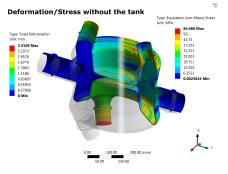
- 1. Introduction and main functions
- 2. Design concept and material choice
- 3. Stress assessment
 - Loads and allowable stress
 - Bolts and welds model
 - Results
- 4. Prototype
 - Status
 - Future plans
 - Lesson learned
- 5. Conclusion

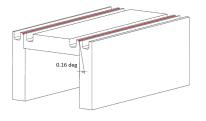




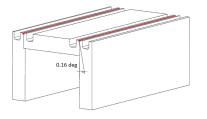

Main functions

- hosts and stiffens the cavity
- contains 2 K helium
- supports magnetic shield and tuning


Main functions



- hosts and stiffens the cavity
- contains 2 K helium
- supports magnetic shield and tuning


Design concept

- thick (3+ mm) welds would determine high deformations at cavity interface
- thin welds alone would allow large deformations of the plates when pressure is applied
- structural loads carried by a large set of bolts between the plates
- 1.5 mm welds at interfaces for leak tightness

Design concept

- thick (3+ mm) welds would determine high deformations at cavity interface
- thin welds alone would allow large deformations of the plates when pressure is applied
- structural loads carried by a large set of bolts between the plates
- 1.5 mm welds at interfaces for leak tightness

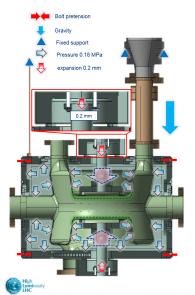
Material selection

St. steel (316LN): well known material, but thermal expansion 2 x niobium

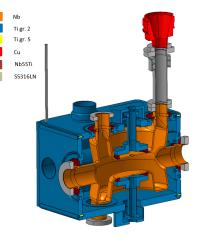
Titanium gr.2: thermal expansion \approx niobium, but some extra complexity for welds

Geometry

- cavity
- tuning
- (+pretuning for DQW)



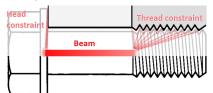
- helium tank
 - 6 Ti plates
 - bolts (covered for tightness)
 - 1.5 mm welds
 - NbTi interface with cavity

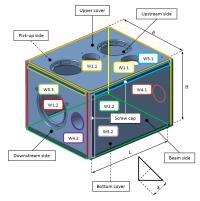


Strength assessment: loads and allowable stress

Material	<i>Rp</i> _{0.2} [MPa]	<i>Rp</i> _{0.2} /1.5 [MPa]
Nb (RRR 300)	75	50
Nb55Ti	480	320
Ti grade 1	200	134
Ti grade 2	280	187
Ti grade 5	830	554
St. steel (316LN)	280	187

Strength assessment: loads and allowable stress

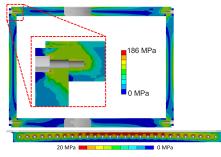

Material	<i>Rp</i> _{0.2} [MPa]	<i>Rp</i> _{0.2} /1.5 [MPa]
Nb (RRR 300)	75	50
Nb55Ti	480	320
Ti grade 1	200	134
Ti grade 2	280	187
Ti grade 5	830	554
St. steel (316LN)	280	187



Strength assessment: bolts and welds

Bolt model:

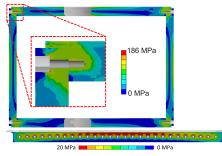
- beam
- extremities constrained
- cross section properties according to VDI 2230:2
- length = distance between head and first thread in the plate



Welds:

- no fatigue
- average stress on each weld assessed

Strength assessment: results


Cavities:

- ANSYS stress intensity > 50 MPa
- analysis of linearized stress according to EN13445-3 ✓

Strength assessment: results

Cavities:

- ANSYS stress intensity > 50 MPa
- analysis of linearized stress according to EN13445-3 ✓

Strength assessment: results (bolts)

DQW:

Name	Units	Bolts	Bolts + Welds
Preload	[N]	4500	4500
Max axial force	[N]	4650	4655
Max bending moment	[Nmm]	3430	1630
Max shear force	[N]	525	245
Equivalent stress	[MPa]	620	480
Proof stress	[MPa]	830	830
Safety factor	-	1.34	1.74

The friction between plates is not taken into account (very conservative assumption)

Strength assessment: results (bolts)

RFD:

Name	Units	Bolts	Bolts + Welds
Preload	[N]	4500	4500
Max axial force	[N]	4705	4787
Max bending moment	[Nmm]	3838	2516
Max shear force	[N]	750	495
Equivalent stress	[MPa]	632	531
Proof stress	[MPa]	830	830
Safety factor	-	1.31	1.56

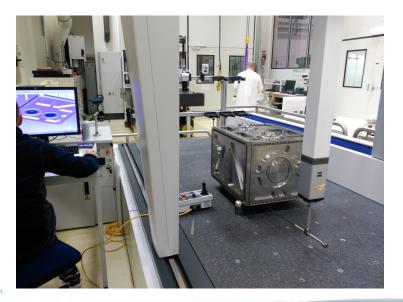
The friction between plates is not taken into account (very conservative assumption)

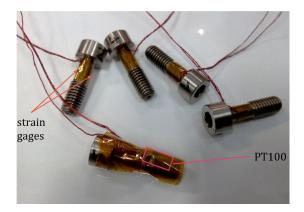
Strength assessment: results (welds)

Weld	Material	R _{p0.2} [MPa]	Stress [MPa]	Allowable stress (= 0.7·R _{p0.2} /1.5) [MPa]	Safety factor
W1.1		22.10		5.91	
W1.2			26.74	-	4.89
W2.1			34.33		3.81
W2.2			14.89		8.78
W3.1.1			26.66		4.90
W3.1.2		24.17		5.41	
W3.1.3		2 280	23.85	5.48	
W3.1.4			26.57		4.92
W3.2.1			33.10		3.95
W3.2.2			33.89		3.86
W4.1	Ti gr. 2		Ti gr. 2 280 12.63 131	10.35	
W4.2			11.90		10.98
W5.1			11.83		11.05
W5.2			10.60		12.33
W5.3			11.79		11.08
W6.1.1			15.33		8.55
W6.1.2]		13.90		9.42
W6.1.3			13.94		9.39
W6.1.4			14.06		9.32
W6.2.1			14.37		9.12
W6.2.2			14.46		9.06

Prototype: goal

- 1. confirm the tank structural resistance
- 2. verify the geometry is good for assembling/welding
- 3. test the assembly procedure
- 4. test welding procedure and welds quality
- 5. verify **leak tightness** along a load cycle representative of real conditions
- 6. verify bolts do not loose **preload** during a load cycle
- 7. **validate FE** model with an estimate of the force on bolts, stress/strain and displacement on few tank locations

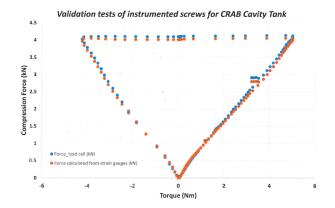




Prototype: sensors

- strain gages on screws
- strain gages on tank

- temperature sensors
- displacement sensors



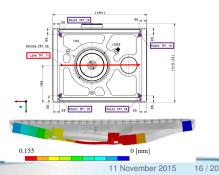
Prototype: sensors

- strain gages on screws
- strain gages on tank

- temperature sensors
- displacement sensors

1. fabrication, assembly and welding

- 2. leak tightness test
- 3. dimensional control
- 4. pressure test
- 5. leak tightness test
- 6. dimensional control
- 7. thermal cycle test
- 8. leak tightness test
- 9. dimensional control


- 1. fabrication, assembly and welding
- 2. leak tightness test
- 3. dimensional control

4. pressure test

- 5. leak tightness test
- 6. dimensional control
- 7. thermal cycle test
- 8. leak tightness test
- 9. dimensional control

Pressure test:

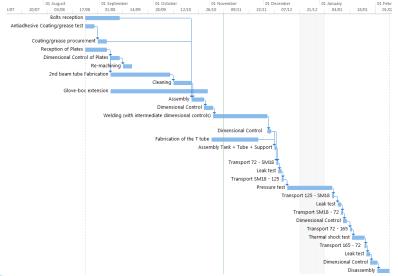
- Δ*p* = 2.6 bar
- strain in few tank/bolts locations monitored
- displacement of few tank
 positions monitored too

- 1. fabrication, assembly and welding
- 2. leak tightness test
- 3. dimensional control
- 4. pressure test
- 5. leak tightness test
- 6. dimensional control
- 7. thermal cycle test
- 8. leak tightness test
- 9. dimensional control

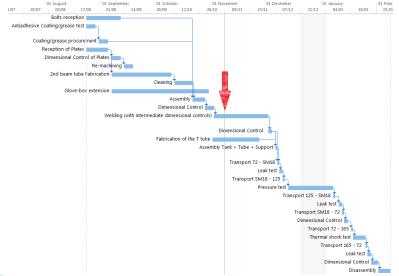
Thermal cycle test:

- 300 K → 80 K (5 cycles)
- strain in few tank/bolts locations monitored

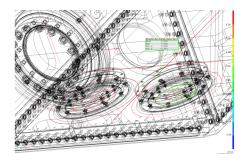
- 1. fabrication, assembly and welding
- 2. leak tightness test
- 3. dimensional control
- 4. pressure test
- 5. leak tightness test
- 6. dimensional control
- 7. thermal cycle test
- 8. leak tightness test
- 9. dimensional control



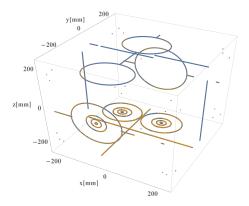
- 1. fabrication, assembly and welding
- 2. leak tightness test
- 3. dimensional control
- 4. pressure test
- 5. leak tightness test
- 6. dimensional control
- 7. thermal cycle test
- 8. leak tightness test
- 9. dimensional control


Success criteria:

- assembly procedure is feasible and welding does not induce excessive deformations
- mechanical strength sufficient
- no leaks
- no substantial relaxation of bolts preload



Prototype: lesson learned (in process...)


- small details in the geometry for better accommodation of some welds
- preload in screws well below expectations
- welding process has an impact on the installed sensors that is larger than anticipated
- ...everything under investigation and precious for SPS!

Prototype: lesson learned (in process...)

- small details in the geometry for better accommodation of some welds
- preload in screws well below expectations
- welding process has an impact on the installed sensors that is larger than anticipated
- ...everything under investigation and precious for SPS!

Summary and conclusions

- tank is key element for cavity strength
- design based on *bolts + welds* (superficial, just for tightness)
- stress in tank very low
- stress in cavity acceptable everywhere
- **bolts** have a **reasonable margin factor** even with largely conservative assumptions
- welds have a large margin factor
- design to be validated by means of a *prototype* (status: welding)
- some unexpected effects, but all info precious for SPS

Summary and conclusions

- tank is key element for cavity strength
- design based on *bolts + welds* (superficial, just for tightness)
- stress in tank very low
- stress in cavity acceptable everywhere
- **bolts** have a **reasonable margin factor** even with largely conservative assumptions
- welds have a large margin factor
- design to be validated by means of a *prototype* (status: welding)
- some unexpected effects, but all info precious for SPS

Merci pour votre attention / Merazie per l'attenzione! !

