



# sity CERN

## Crab Cavity Cryomodules: Thermal Budget and Heat Loads

#### <u>F. Carra</u>

with inputs from O. Capatina, K. Brodzinski, T. Jones, R. Leuxe, Z. Li, H. Park, N. Templeton, S. Verdú Andrés, C. Zanoni, and many others

#### Crab Cavities: SPS Cryomodule Engineering Review CERN, Geneva, Switzerland – 10.11.2015



<u>М</u>

Engineering Department

## Outline

## Thermal balance for DQW and RFD

- Highlights of thermal analyses
- Summary



Ш

Engineering Department

## Back to 2013 CC Workshop

| HL per<br>cryomodule |                                                                     | HL @2K<br>[W]               | HL @80K<br>[W]      | Comments                                                                                                                                                                                                      |
|----------------------|---------------------------------------------------------------------|-----------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Radiation (Cavity + Phase<br>Sep. Cold surface +<br>Thermal shield) | 0.2                         | 6.8                 | Rescaling from LHC:<br>0.1W/m <sup>2</sup> @cold mass<br>1.7W/m <sup>2</sup> @thermal shield                                                                                                                  |
|                      | CWT                                                                 | 3.0                         | 12.6                | 1 heat interceptor not optimized                                                                                                                                                                              |
|                      | Supporting system                                                   | 0.2                         | 3.3                 | HL@2K estimated from SPL                                                                                                                                                                                      |
|                      | RF couplers                                                         | 2 x 2 = <b>4.0</b>          | 2 x 50 = <b>100</b> | For a tube thickness t = 3mm                                                                                                                                                                                  |
| Static               | Cables &<br>Instrumentation                                         | 1.0                         | 0                   | Tentative                                                                                                                                                                                                     |
|                      | Tuner                                                               | 0.2                         | 0                   | Not thermalized                                                                                                                                                                                               |
|                      | Other order modes                                                   | 4x0.2 + 2x2<br>~ <b>5.0</b> | 100                 | Max losses found in ODU cryostat:<br>4 small HOMs (4x0.2W @2K<br>estimated from SPL) + 2 "chimneys"<br>HOM (2x2W @2K for a thickness of<br>3 mm and a length outside He bath<br>of 340 mm); @80K: 4x? + 2x45W |
| Total Static         |                                                                     | 13.6                        | 222.7               |                                                                                                                                                                                                               |
| Dynamic              | Deflecting mode                                                     | 6.0                         | 0                   | Tentative                                                                                                                                                                                                     |
|                      | Beam current                                                        | 0.5                         | 0                   | Tentative                                                                                                                                                                                                     |
|                      | RF couplers                                                         | 2 x 2 = <b>4.0</b>          | 2 x 5 = <b>10</b>   | For a tube thickness t = 3mm ; P <sub>avg</sub> = 100 kW                                                                                                                                                      |
|                      | Other order modes                                                   | 0.6                         | 10                  | for a P <sub>avg</sub> = 100 kW; f = 1000 MHz;<br>@2K chimneys: 2x0.1 + small HON<br>(estimated from SPL): 4x0.1@2K;<br>@80K: 4x?+2x4                                                                         |
| Total<br>Dynamic     |                                                                     | 11.1                        | 20                  |                                                                                                                                                                                                               |
| <b>Total losses</b>  |                                                                     | 24.7                        | 242.7               |                                                                                                                                                                                                               |

F. Carra – CERN

#### **Thermal Budget: November 2015**

|                 | DQW  |     | RFD  |     |  |  |
|-----------------|------|-----|------|-----|--|--|
|                 | 2K   | 80K | 2K   | 80K |  |  |
| Static          |      |     |      |     |  |  |
| Radiation       | 2    | 40  | 2    | 40  |  |  |
| CWT             | 0.2  | 2   | 0.2  | 2   |  |  |
| Supports        | 2    | 50  | 2    | 50  |  |  |
| FPC             | 4    | 100 | 4    | 100 |  |  |
| Instrumentation | 1    | 0   | 1    | 0   |  |  |
| HOM/Pickup      | 3    | 50  | 2.5  | 35  |  |  |
| Tuner           | 0.3  | 10  | 0.3  | 10  |  |  |
| Total static    | 12.5 | 252 | 12   | 232 |  |  |
| Dynamic         |      |     |      |     |  |  |
| Cavity          | 6    | 0   | 6    | 0   |  |  |
| FPC             | 5.6  | 10  | 5.4  | 10  |  |  |
| HOM/Pickup      | 6    | 20  | 4    | 20  |  |  |
| Beam            | 0.5  | 0   | 0.5  | 0   |  |  |
| Total Dynamic   | 18.1 | 130 | 15.9 | 100 |  |  |
| TOTAL           | 30.6 | 282 | 27.9 | 262 |  |  |

Some considerations and changes wrt 2013:

- From active to **passive cooling**. He gas temperature >50K, 80K considered in the analyses.
- Heat interceptions via **Cu bands**, design under completion.
- Larger contribution by radiation losses: holes in the thermal screen to allow online instrumentation alignment
- **Coaxial lines** necessary for the HOM (standard cables too resistive for the RF @1kW, 1GHz)
- Margin considered with respect to the ideal calculations, to keep into account uncertainties (position and temperature of interceptors, machining tolerances, etc.)

DQW and RFD Cryomodules: Heat Losses to 2K mass



**Engineering Department** 



**Engineering Department** 

#### **Thermal Analyses**

#### **Highlights of calculations performed:**

- Cold-warm transitions
- Supporting system → <u>see T. Jones' presentation</u>
- Fundamental power coupler
- High-order modes couplers
- He tank cool-down
- Radiation losses





## **Cold-Warm Transitions**

Cold-Warm transitions (CWT) connect the cold mass to the warm beam pipe

Losses are exchanged by conduction and by radiation





## **Cold-Warm Transitions**

Losses on the CWT are minimized by the presence of the stainless steel **bellows** 

Very high thermal resistance introduced





- No resistance of all the other components considered – bellows only
- Thickness: 0.15 mm, length: 360 mm (15 convolutions)
- Simple analytical calculation: 0.35W/CWT to 2K without heat interceptors,
   0.05W/CWT intercepting



#### **Fundamental Power Coupler**

- It brings the RF power to the cavity
- Exchanges heat with the cold mass by **radiation** (antenna) and by **conduction** (can)
- More details on FPC and RF lines in E. Montesinos' presentation



Wave



#### **Fundamental Power Coupler**

#### FPC can – 316LN, copper coated

- Wall thickness: 3 mm single wall
- Flange to flange length: 230 mm
- Optimized heat intercept @80K
- f = 400 MHz, P = 40 kW, 100% duty cycle
- Semi-analytical calculation
- Radiation from antenna kept into account





#### **Fundamental Power Coupler**

#### 1D Temperature profiles - He

#### FPC can - 316LN, copper coated

- In the past, the analysis was performed with ANSYS/HFSS
- Further iterations were done with the semi-analytical method, which provided very similar results → much faster!







#### **Fundamental Power Coupler**

#### **FPC antenna – Copper OFE**

- Heating on the antenna generated when RF on
- Can lead to high temperatures of Cu (creep, outgassing, high radiation to cold mass)
- Water cooling necessary, water speed: 1.5 m/s
- Thermal loss on the antenna:
  - DOW ~ 100 W
  - $RF \sim 60 W$









- Iterative HFSS/ANSYS analysis to evaluate T field on hook and radiation to cold mass
- With the final solution: 0.7 (RFD)-0.9 (DQW) W/FPC to 2K by radiation
- T<sub>max</sub> hook < 100 <sup>o</sup>C

Engineering Department

& temperature increase

arra – CERN

11



#### **Fundamental Power Coupler**

If RF is off and water is not circulating, the antenna **could freeze** at the upper extremity

 Calculations show that this is not the case, given the low power exchanged by radiation with the cold mass



AB: Steady-State Thermal Steady-State Thermal Time: 1. s 30/10/2015 14:55

A Temperature: 300. K
B Temperature 2: 50. K
C Temperature 3: 2. K
B Radiation: 295.15 K, 0.2 , 1.
E Radiation 2: 295.15 K, 0.1 , 1.
F Radiation 3: 295.15 K, 0.1 , 1.



- The risk is higher on the can: flux to the 80K circuit is 40 W
- Natural convection from air on tank plates: 4 W/(m<sup>2</sup>K)
- Heater will be installed to avoid freezing of the warm extremity of the can



## **High-Order Modes**

- Coaxial lines instead of commercial cables (high heat losses, high T otherwise)
- Nb antenna, LHe-cooled. Iterative ANSYS/HFSS calculations, similarly to FPC. See <u>M.</u> <u>Garlasche's talk</u>





## **High-Order Modes**

COLD

0.31



- 1 kW, 1 GHz
- Stainless steel tubes, Cu coating: 5 microns
- D<sub>ext</sub> = 40.8 mm, D<sub>int</sub> = 17.4 mm, thickness 0.5 mm
- Length: 4x350 mm, 2x550 mm
- Interception needed both on inner and outer conductors
- Inner tube: interception with a ceramic electrical insulator, thermal conductor
- Calculation performed semi-analytically
- Thermal balance keeps into account an additional heat loss of 0.4W/HOM because of a 50 micron manufacturing error







#### **Tank and Cavity cool-down: FEA**

 We checked what happens in terms of stresses when a maximum gradient of 50K is generated during cool-down on cavity and He tank → everything ok

15





#### **Radiation Losses**

Radiation losses: minimized by the introduction of a **thermal screen**, with **MLI** on the inner and outer surfaces of the screen and the cold mass





#### **Radiation Losses**

- Holes are present in the thermal screen, to allow measurements for the aligning system  $\rightarrow$  see M. Sosin's presentation
- Holes act almost as black bodies in the exchange by radiation. Calculation with ANSYS of the additional losses with holes



$$q_{1} = -q_{2} = q_{12} = \frac{\sigma \left(T_{1}^{4} - T_{2}^{4}\right)}{\frac{1 - \varepsilon_{1}}{\varepsilon_{1}A_{1}} + \frac{1}{A_{1}F_{12}} + \frac{1 - \varepsilon_{2}}{\varepsilon_{2}A_{2}}}$$

- Thermal load (LHC measurements, V. Parma and R. Bonomi) ~ 0.1W/m<sup>2</sup>
- Additional heat losses because of holes
   ~2W

1.000 (m)



- The thermal balance of the cryomodule, estimated at first in 2013, has been continuously updated and reviewed with the design advancement
- One of the main differences is the change from liquid N to gas He cooling for the heat interceptors
- The calculations done for evaluating the total heat losses encompass analytical, semi-analytical and numerical methods
- Advanced iterative simulations where performed with HFSS and ANSYS to take into account the intrinsic coupling between thermal and electrical resistance of components of complex shape
- Additional safety margins (~10%) on the heat losses are contained in the table, to consider tolerances in the machining, temperature and position of the interceptors and other minor uncertainties
- No showstoppers highlighted during all this exercise!









Tuesday, 10 November 2015

F. Carra – CERN



## HOM hook

Power losses evaluated on the old hook geometry, HFSS calculation performed by M. Navarro and S. Verdú

- Scaling factor HFSS/ANSYS for Nb supra: 3.996E10
- Scaling factor HFSS/ANSYS for Cu: 2.056E16
- Total RF losses on the hook: Surface Loss De
  - Nb supra ~ 5 mW
  - Cu ~ 2.5 kW!!!

![](_page_20_Figure_7.jpeg)

![](_page_20_Picture_9.jpeg)

85

70 (mm)

#### HOM hook - Nb supra

ANSYS to evaluate EUCARD' XBEA temperature distribution on the hook

- Objective:  $T_{max} < T_{supra}$  (to avoid losing Nb superconductivity)
- Conduction only considered (2K boundary on the contact hook/HOM wall)

D: Nb supra Hook Temperature Type: Temperature Unit: K Time: 1 19/02/2014 18:30

> 3.1067 Max 2.9838 2.8608 2.7378 2.6149 2.4919 2.3689 2.2459 2.123 2 Min

#### Results:

T<sub>max</sub> = 3.1K OK!

#### Low heat flux to He bath (5 **mW) OK!**

## Engineering The solution is acceptable from the thermal point of

view

![](_page_21_Figure_11.jpeg)

![](_page_22_Picture_0.jpeg)

#### HOM hook - Copper

Engineering Department

![](_page_22_Figure_3.jpeg)

- Thermal load too high if the ANSYS calculation is not even converging due to the too high temperature gradient on the hook!
- Rough calculation by hand: T<sub>max</sub> on copper > 10.000K!!!

One can think about studying a cooling circuit for that (very difficult), but any way the armal losses to the He bath are huge!

## FPC hook - Copper

Total RF losses on the Cu hook ~ 500 W

Hower than the HOM hook (Cu version), but still quite huge

Active cooling needed (most likely water: heat load very high!)

![](_page_23_Figure_4.jpeg)

п

![](_page_23_Picture_6.jpeg)

35

70 (mm)

0

## **FPC hook – Copper**

#### **Example of cooling circuit calculation – WATER**

- Cooling channel diameter = 4 mm, water speed = 1.3 m/s (should be acceptable for copper)  $\rightarrow$  Q = 1 l/min
- $h_c \sim 7 \text{ kW/m^2/K}$  (to be checked if this is sufficient depending on the total surface of the cooling channels)
- $\Delta T_{water} = W/(\rho_{water} \cdot c_{p water} \cdot Q) = 7 \circ C$  (should be ok)
- These characteristics would probably be acceptable, **but**:

![](_page_24_Figure_6.jpeg)

Probably difficult to design a circuit which cools down also the curve part of the hook!

#### FPC hook – Copper

In this case, imagine that we have a perfect cooling of the straight part (temperature = 26°C imposed to the zone circled in red)

![](_page_25_Figure_2.jpeg)

 Huge temperature increase on the curve part! (it's the most loaded one & it's not actively cooled)

21 February 2014

F. Carra – CERN

Presentation 21/2: Nb ok for HOM hook, Cu not ok

methat calculation, Rs of Nb was calculated at 2K

![](_page_26_Picture_3.jpeg)

CERN

 Iterative calculation HFSS/ANSYS is needed to calculate the real temperature distribution if Rs(Nb) is a function of T

![](_page_26_Figure_5.jpeg)

- Rs (2K) ~ 10 nΩ
- Rs (3K) ~ 13 nΩ
- Rs (3.3K) ~ 20 nΩ
- Rs (3.5K) ~ 30 nΩ
- Rs (4K) ~ 50 nΩ
- Rs (5K) ~ 85 nΩ

The thermal conductivity is a function of temperature (this was already considered in 21/2 presentation) and RRR

- See "RF Superconductivity", H. Padamsee, pag. 53 for the plots  $\lambda/T$  as a function of RRR
- Two calculations performed: RRR=380, RRR=40
- No active cooling of Nb hook considered! Massive hook

![](_page_27_Figure_5.jpeg)

Fig. 3.7 Thermal conductivity versus temperature for *I*=0.5 mm and RRR=100 (solid), 200 (short dashed line), 300 (medium dashed line), and 500 (long dashed line). (b) Measured thermal conductivity of Nb for various RRR [167] (courtesy of DESY).

Engineering Department

#### **RRR=380**: T<sub>max</sub> ~ 3.4K after iterative calculation, flux to He bath ~ 9 mW

#### Acceptable results!

![](_page_28_Figure_3.jpeg)

#### RRR=40: T>T<sub>c</sub> not acceptable!

- Solutions if RRR=40 is chosen:
  - 1. Either active cooling (hollow hook He superfluid-cooled)
  - 2. Or copper hook with Nb coating
  - The minimum RRR acceptable without active cooling seems to be around 250 (qualitative estimation, pag. 53 Padamsee → to be refined if needed)

TT

![](_page_29_Picture_7.jpeg)

![](_page_30_Picture_0.jpeg)

21 February 2014

# Backup slide: HOM hook with T=4K boundary condition

- A boundary condition of 2K is not realistic because there is a certain resistance between the 2K He bath and the hook fixed support
  - A new calculation has been performed imposing to a RRR=300 Nb hook (massive) a boundary of 4K
- Results are acceptable: T<sub>max</sub> < 5K, Heat losses to He bath ~ 35 mW</p>

| Type: Temperature         Unit: K         Time: 1         05/03/2014 12:25         4.8264 Max         4.7346         4.6428         4.5509         4.4591         4.3673         4.2755         4.1836         4.0918         4 Min | H: N         | b supra Hook Tdipendent_RRR=300; Tboundary=4K |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------|
| Type: Temperature         Unit: K         Time: 1         05/03/2014 12:25         4.8264 Max         4,7346         4,6428         4,5509         4,4591         4,3673         4,2755         4,1836         4,0918         4 Min | Tem          | perature<br>                                  |
| Unit R         Time: 1         05/03/2014 12:25         4.8264 Max         4.7346         4.6428         4.5509         4.4591         4.3673         4.2755         4.1836         4.0918         4 Min                            | туре<br>Пийн | :: Temperature                                |
| <b>4.8264 Max</b><br>4.7346<br>4.6428<br>4.5509<br>4.4591<br>4.3673<br>4.2755<br>4.1836<br>4.0918<br><b>4 Min</b>                                                                                                                   | Time         | - N                                           |
| 4.8264 Max<br>4.7346<br>4.6428<br>4.5509<br>4.4591<br>4.3673<br>4.2755<br>4.1836<br>4.0918<br>4 Min                                                                                                                                 | 05/0         | :: L<br>3/2014 12:25                          |
| 4.8264 Max<br>4.7346<br>4.6428<br>4.5509<br>4.4591<br>4.3673<br>4.2755<br>4.1836<br>4.0918<br>4 Min                                                                                                                                 | 05,0         | 5,2024 22,25                                  |
| 4,7346<br>4,6428<br>4,5509<br>4,4591<br>4,3673<br>4,2755<br>4,1836<br>4,0918<br>4 Min                                                                                                                                               |              | 4.8264 Max                                    |
| 4.6428<br>4.5509<br>4.4591<br>4.3673<br>4.2755<br>4.1836<br>4.0918<br>4 Min                                                                                                                                                         |              | 4.7346                                        |
| 4.5509<br>4.4591<br>4.3673<br>4.2755<br>4.1836<br>4.0918<br>4 Min                                                                                                                                                                   |              | 4.6428                                        |
| 4.4591<br>4.3673<br>4.2755<br>4.1836<br>4.0918<br><b>4 Min</b>                                                                                                                                                                      |              | 4.5509                                        |
| 4.3673<br>4.2755<br>4.1836<br>4.0918<br>4 Min                                                                                                                                                                                       |              | 4.4591                                        |
| 4.2755<br>4.1836<br>4.0918<br><b>4 Min</b>                                                                                                                                                                                          |              | 4.3673                                        |
| 4.1836<br>4.0918<br>4 Min                                                                                                                                                                                                           |              | 4.2755                                        |
| 4.0918<br>4 Min                                                                                                                                                                                                                     |              | 4.1836                                        |
| 4 Min                                                                                                                                                                                                                               |              | 4.0918                                        |
|                                                                                                                                                                                                                                     |              | 4 Min                                         |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |
|                                                                                                                                                                                                                                     |              |                                               |

![](_page_30_Figure_6.jpeg)

31

![](_page_31_Picture_0.jpeg)

#### Tank and Cavity cool-down: FEA

Z

C: Static Structural Stress Intensity Type: Stress Intensity Unit: MPa Time: 1 10/11/2015 10:01

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

225.00

75.00

300.00 (mm)

![](_page_31_Figure_7.jpeg)

![](_page_31_Figure_8.jpeg)

![](_page_31_Picture_9.jpeg)

F. Carra – CERN

![](_page_32_Figure_0.jpeg)