

HOM: Review of Design & Production Status

M. Garlaschè on behalf of CRAB Collaboration

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Outline

- Introduction
- Calculations
- Production Update

CRAB HOMs

Aim: damp detrimental modes with frequencies higher than the fundamental one (400MHz)

- Three HOM in DQW, two for RFD
- Bulk Nb antenna, He-cooled
- Coaxial lines evacuate 1 kW/HOM

HOM Calculations

Thermal:

- Quench Power Limits
- Coax Cable Heat Losses

See presentation by E. Montesinos & by F. Carra

Thermo-Structural:

- Resistance to loads & maximum deformation in cool-down & working condition
- Modal performance

HOM Review, 25th Feb 2015

DQW: Thermal Calcs

Cu option not viable RRR > ~250, for acceptable λ_{Nb}

DQW: Thermostruct. Calcs

	Load Value	Verification criteria
Normal Operation (Load Case #1)	No pressure Thermal Contraction: 300K → 2K Coax Line: 20 N	Displacement of the hook (wrt the flange). Total budget 0.5 mm
Maximum Stress (Load Case #2)	Internal He pressure: 0.18 MPa Thermal Contraction: 300K → 2K Coax Line (w/ margin): 50 N	Yield strength at 2K
Maximum Stress (Load Case #3)	Internal He pressure: 0.18 MPa Coax Line (w/ margin): 50 N	Yield strength at 300K

Further Assumptions:

- Nb-316LN welds not modeled (bonded contact in the flange internal cylinder).
- Uniform temperature.
- Neglected temperature dependence of Elastic modulus and Poisson's ratio.

Joints Evaluation: Pressure

Nb & SS welds : **EB weld** Nb/SS joints : Cu-base **brazing**

Nb Welds: 100% full penetration SS Welds: backing strip for protection of Nb components

SS welds @ LOAD CASE #2

Weld #	Peak Stress	R _{p0.2} /1.5= 547MPa
090	190 MPa	
060	402 MPa	
140	139 MPa	
100	338 MPa	
120	76 Mpa	

Nb: P.E. Compliant **SS:** comfortable safety factor

DQW Calculations: Remarks

<u>Thermal</u>

- Hook temperature: working condition not critical
- RRR_{min}= 250
- Final design : active He Cooling inside stem

Thermo-Structural

- HOM design is compliant with the specified strength and deformation limits (both work. Cond. & worst Case)
- Max 0.1mm relative displacement in the most critical area @ working condition
- Welds : well below safety limits

RFD H-HOM: Thermal Calcs Courtesy H. Park - ODU

RFD H-HOM: Thermal Calcs Courtesy H. Park - ODU

RFD: Thermostruct. Calcs

Courtesy H. Park - ODU

	Load Value			Verification criteria
Normal Operation (Load Case #1)	No pressure Thermal Contraction: 300K → 2K Coax Line: No load			Displacements of the hook and Tee
Directional Deformation 4 Type: Directional Deformation(X Axis) Unit: mm Cylindrical sys Time: 1 0.044291 Max 0.014189 -0.015912 -0.015912 -0.015912	A			
-0.076116 -0.10622 -0.13632		Displ	Value [um]	Criteria
-0.16642 -0.19652 -0.22662 Min		А	-200	Tolerance +/- 0.5mm
		В	<+20	Accounted in Fab. Dwg
		С	220	Tolerance +/- 1mm Accounted in Fab. Dwg
		D	44	Disregardable

RFD: Thermostruct. Calcs

Courtesy H. Park - ODU

RFD Calculations - Remarks

Thermal:

 Niobium hook and tee maintains 10 nΩ range temperature (< 2.1 K), no thermal runaway.

Thermo-structural:

- Stress Coupler is structurally safe and sound.
- **Deformations** caused by temperature change is well **within tolerance** level.

Maximum stress of 13 MPa occurs in the stainless steel outer shell (allowable stress ~120 MPa)

Production Update

Production Update: DQW

6

(10)

• 2x parts done

High Luminosity LHC

7

 all remaining parts rough machined, waiting for first weld to integrate eventual changes

61

All Nb pieces and SS long delay pieces either **produced** or to be **finalized by Dec 2015**

DOW Prod. Update: Hook

6x+1x parts currently produced and ready for BCP

Manufacturing

- One order of magnitude better than final tolerances
- Safe starting point due to assembly steps stack-up

BCP Qualification

- 1st BCP_{21um} + 2nd BCP_{30um}
- Consistent results

DQW Prod. Update

DQW Prod. Update

RFD Prod. Update

H-HOM coupler – bulk niobium

- manufacturing drawings under finalization at CERN
- Material ordered (expected WK50)

V-HOM coupler – copper

• 3D model finalized; manufacturing drawing to start

Conclusive remarks

Thermal

• HOMs temperature: working condition not critical

Thermo-Structural

• **HOMs design is compliant** with the specified strength and deformation limits (both Working Condition & Worst Case)

Production

Manufacturing in line with current schedule for both cavities

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

References

[1] Cryogenie, B.Hebral et al., pag. 11
[2] D. Vaucoret, Materials and Ansys Library for Design Office, EDMS 1291793.
[3] Tensile tests
[4] H. Kaiser, Ge. Meyer, H.B. Peters, and G. Weichert, "Helium Vessel for the TTF Cavity," TESLA Collaboration Report 94–26, October 1994.
[5] Information provided by Ignacio Aviles Santillana (CERN).
[6] "Fatigue life prediction...bellows at cryogenic temperatures" B. Skoczenet al., LHC Project Note 012
[7] CERN specification for 1.4435 (316L) for bellows : EDMS 790771

[1]"RF Superconductivity", H. Padamsee, pag. 53