

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

SRF Development for PIP-II With focus on 325 MHz Spoke Resonators (for the common aspects with crab cavities)

Leonardo Ristori HL-LHC Crab Cavity Cryomodule Review Cern - 11 November 2015

Proton Improvement Plan II (PIP-II) mission

□ Particle Physics Project Prioritization Panel (P5) Science Drivers:

- Use the Higgs Boson as a New Tool for Discovery
- Pursue the Physics Associated with Neutrino Mass
- Identify the New Physics of Dark Matter
- Understand Cosmic Acceleration : Dark Energy
 and Inflation
- Explore the Unknown : New Particles, Interactions, and Physical Principles

Proton Improvement Plan II (PIP-II):

The PIP-II goal is to support long-term physics research goals by providing increased beam power to neutrino experiments, while providing a platform for the future.

Proton Improvement Plan II (PIP-II) mission and strategy

- Increase Main Injector power
 - from 700 kW (NOvA) to >1 MW (LBNF) in the energy range 60 – 120 GeV
- Increase Booster power from 80 to 160 kW
 - 8 GeV program: SBNE, ...
- \Rightarrow Roadmap for CD-3 in FY19/20
- \Rightarrow Construction phase is 5 years: 2019-23
- \Rightarrow Goal is 1 MW in 2024

The diamond of PIP-II is a state-of-the-art SRF Linac

Diamonds are beautiful but difficult to make

PIP II SC Linac Requirements

AP-0 AP-0 AP-3	AO BUILDING LICCOSUF		WILSON HALE
CENTER SERVICE BUILDING			
Performance Parameter	PIP-II		
Performance Parameter Linac Beam Energy	PIP-II 800	MeV	
Performance Parameter Linac Beam Energy Linac Beam Current	PIP-II 800 2	MeV mA	
Performance Parameter Linac Beam Energy Linac Beam Current Linac Beam Pulse Length	PIP-II 800 2 0.55	MeV mA msec	
Performance Parameter Linac Beam Energy Linac Beam Current Linac Beam Pulse Length Linac Pulse Repetition Rate	PIP-II 800 2 0.55 20	MeV mA msec Hz	

The Linac Reference Design

- The reference design is ready:
- Frequency choice: sub-harmonics of 1.3 GHz
 - 162.5 MHz, 325 MHz and 650 MHz;
- RF cavity types and betas:
 - one section of 162.5 MHz HWR type, $\beta = 0.11$ cavity,
 - two sections of 325 MHz spoke-cavity type, SSR1 and SSR2 with β = 0.22 and β = 0.47; and
 - two sections of elliptical 650 MHz cavities with β = 0.61 and β = 0.92;
- Break points are optimized in order to minimize the number of the cavities;
- CM concept:
 - separate CMs,
 - solenoids for HWR and SSR,
 - no focusing elements for elliptical.
- Operating regimes both pulsed and CW;
- No HOM dampers.

The Linac Reference Design

*Warm doublets external to cryomodules *All components CW-capable*

11 November 2015

🛠 Fermilab

The Linac Reference Design

Name	beta	Freq (MHz)	Type of cavity	B _{peak} (mT)	E _{peak} (MV/m)	E _{acc} (MV/m)	Gain (MeV)
HWR	0.11	162.5	Half wave resonator	48.3	44.9	9.7	2.0
SSR1	0.22	325	Single-spoke resonator	58.1	38.4	10	2.0
SSR2	0.47	325	Single-spoke resonator	64.5	40	11.4	5.0
LB650	0.61	650	Elliptic 5-cell	72	38.5	15.9	11.9
HB650	0.92	650	Elliptic 5-cell	72	38.3	17.8	19.9

The main challenges and technical risks

- Future CW operation \rightarrow cryo-losses \rightarrow high Q₀ is desired;
- Low beam loading → narrow bandwidth;
 - Pulsed regime \rightarrow Lorentz Force Detune (LFD);
 - CW regime \rightarrow microphonics;
- High-Order Modes → "to damp, or not to damp?"
- High-Q0 program was initiated and is running successfully;
- Resonance Control program is underway in order to mitigate both microphonics and LFD;
- "Passive" mitigation of the cavity detune improvement of cavity mechanical properties is underway;
- Detailed HOM analysis is performed.

High Q0 R&D program

- Results highlights 120C bake versus N doping Q~ 7e10 at 2K, 17 MV/m – world record at this frequency!
- Applying N doping to 650 MHz (beta=0.9) leads to double Q compared to 120C bake (standard surface treatment ILC/XFEL)

A. Grassellino, MOYGB2, IPAC15, Richmond; MOBA06, MOPB029, MOPB091

🚰 Fermilab

Resonance Control R&D program

- Piezo feedback has successfully stabilized the resonance with high precision in CW to negligible levels (11 mHz RMS)
- Ponderomotive instability has been successfully mitigated using piezo feedforward tied to the square of the gradient during both CW and pulsed operation
- Adaptive feedforward has successfully suppressed detuning from deterministic sources of detuning
- Techniques for fully characterizing the tuner-cavity-waveguide system automatically have been developed and used successfully

"Resonance Control for Narrow Bandwidth SRF Cavities"

(W. Schappert, Yu. Pischalnikov, J. Holzbauer)

🗲 Fermilab

Poster TUPB095

General design approach

- Most components (couplers, tuners, etc.) should be of the same or similar type;
- Cryomodules should be preferably of the same type and contain mostly the same parts;
- Two types of CMs are to be prototyped,
 - spoke-cavity CM for SSR1 and
 - elliptical cavity CM for HB 650.
- Other CMs will be developed basing on the lessons learned for these CMs.

PXIE: R&D program for PIP-II front end

Status of development of critical components. HWR (ANL)

- 2 HWRs were tested with very high performance:
 - residual resistance is <2.7 nOhm at 15 MV/ m accelerating field (E_{peak}=70 MV/m, B_{peak}=75 mT and voltage = 3.2 MV with the cavity length=0.206m)
 - No X-rays observed up to 70 MV/m E_{peak}

Z. Conway, WEBA05 SRF2015 – Whistler Canada "Achieving high peak fields and low residual resistance in half-wave cavities"

Status of development of critical components, 650 MHz

650 MHz section:

Currently Available Cavities:

<u>1-Cell 650 MHz*</u>	<u>5-Cell 650 MHz</u>
1. B9AS-AES-001	1. B9A-AES-007
2. B9AS-AES-002	2. B9A-AES-008
3. B9AS-AES-003	3. B9A-AES-009
4. B9AS-AES-004	4. B9A-AES-010
5. B9AS-AES-005	*VTS Tested
6. B9AS-AES-006	

Expected Cavities: <u>1-Cell 650 MHz</u> Pavac, Inc. and VTS-tested Two to be delivered in the end of 2015.

5-Cell 650 MHz Pavac, Inc. Three are delivered Five to be delivered in 2015.

11 November 2015

Status of development of critical components, 650 MHz

Low-Beta Cavity

High-Beta Cavity

15 L. Ristori | SRF Development for PIP-II

Status of development of critical components, 650 MHz CMs

Low-Beta Cryomodule

- 11 total cryomodules
- 3 cavities each (650 MHz, 5-cell)
- 33 total cavities
- No magnets internal to the cryomodule
- Approximate length = 3.9 m

- Many design features common with the current SSR1 cryomodule design
- Coupler port locations are fixed with respect to the vacuum vessel
- Support system not subject to thermal distortions during cooldown
- To date, unproven

High-Beta Cryomodule

- 4 total cryomodules
- 6 cavities each (650 MHz, 5-cell)
- 24 total cavities
- No magnets internal to the cryomodule
- Approximate length = 9.5 m

SSR1 Cryomodule for PIP-II

Two SSR1 cryomodules will be part of the 800 MeV linear accelerator complex that Fermilab is planning to build in the framework of the Proton Improvement Plan-II (PIPII) project. The cavity string assembly of this cryomodule which constitutes the beam-line volume, contains *eight* superconducting Single Spoke Resonators type 1 (SSR1) with cold-end input couplers and four solenoids.

SSR1 Cryomodule: Functional Requirements Specification

This engineering document "325 MHz SSR1 CRYOMODULE, FRS, ED0001316" (available in Teamcenter) addresses the functional requirements of the PIP-II SSR1 cryomodule. It includes physical size limitations, cryogenic system requirements and operating temperature, instrumentation, cavity and lens sequence and alignment requirements, magnet current leads, and interfaces to interconnecting equipment and adjacent modules.

General		SRF Cavities	
Physical beam aperture, mm	30	Number, total	8
Overall length (flange-to-flange), m	≤5.4	Frequency, MHz	325
Overall width, m	≤1.6	β geometric	0.22
Beamline height from the floor, m	1.3	Operating temperature, K	2
Cryomodule height (from floor), m	≤2.00	Operating mode	CW
Ceiling height in the tunnel, m	3.20	Operating energy gain at β =0.22, MV/cavity	2.05
Maximum allowed heat load to 70 K, W	250	Coupler type – standard coaxial with cold part	105
Maximum allowed heat load to 5 K, W	80	impedance, Ω	
Maximum allowed heat load to 2 K, W	50	Coupler power rating, KW	>20
Maximum number of lifetime thermal cycles	50	Solenoids	
Intermediate thermal shield temperature, K	45-80	Number, total	4
Thermal intercept temperatures, K	5 and 45-	Operating temperature, K	2
	80	Current at maximum strength, A	≤100
Cryo-system pressure stability at 2 K (RMS), mbar	~0.1	∫B²dL, T²m	4.0
Environmental contribution to internal field	<15 mG	BPMs	
Transverse cavity alignment error, mm RMS	<1	Number, total	4
Angular cavity alignment error, mrad RMS	≤10	Number of plates per BPM	4
Transverse solenoid alignment error, mm RMS	<0.5	Accuracy of electrical center with respect to the	≤±0.5
Angular solenoid alignment error, mrad RMS	<1	geometric center, mm	

Prototype SSR1 Cryomodule for PXIE

A prototype cryomodule is under design and development to achieve the goals of:

- <u>Validate design concepts</u> of new spoke cavity cryomodule
 - Room temperature strongback
 - Individual support posts to control axial motion
 - Conduction cooled magnet current leads
 - Single-window coaxial input coupler
 - Integral beam instrumentation
 - Determine the practicality of tuner access ports
 - Estimate heat loads
- <u>Gain experience</u> with the required alignment tolerances and check alignment stability during cooldown.
- <u>Minimize risk ahead of full PIP-II design</u> and production effort by gaining experience with strings of spoke cavities, solenoids, and beam instrumentation, e.g. cleanroom operations, final assembly in the vacuum vessel, shipping and handling, etc.

SSR1 Cryomodule Heat Load Estimates

SSR1 Cryomodule Heat Load Estimates

T. Nicol -February 9, 2012

SSR1		Each unit		NAI+	Total		
8 cavities, 4 solenoids	80 K	4.5 K	2 K	iviuit	70 K	4.5 K	2 K
Input coupler static	5.36	2.82	0.50	8	42.88	22.56	4.00
Input coupler dynamic	0.00	0.00	0.25	8	0.00	0.00	2.00
Cavity dynamic load	0.00	0.00	1.78	8	0.00	0.00	14.24
Support post	2.76	0.36	0.05	12	33.12	4.32	0.60
Conduction lead assembly	36.80	13.20	1.24	4	147.20	52.80	4.96
MLI (total 70 K + 2 K)	30.54	0.00	1.42	1	30.54	0.00	1.42
Cold to warm transition	0.72	0.08	0.01	2	1.44	0.16	0.02
Total					255.2	79.8	27.2

Notes:

1. Cavity dynamic loads from Nikolai Solyak, February 2012.

2. Input coupler static loads from S. Kazakov, February 2012, no copper plating on outer conductor,

intercepts at 15 K and 125 K.

3. Current lead heat loads assume 2 coils at 50 A, 1 coil at 200 A.

11 November 2015

20

SSR1 Cryomodule

L. Ristori, T. Nicol, Y. Orlov, D. Passarelli, M. Parise http://accelconf.web.cern.ch/AccelConf/PAC2013/papers/thpma09.pdf

Cutview of the prototype SSR1 cryomodule

SSR1 Cryomodule Design for PXIE, T. Nicol et al., Proceedings of PAC2013, Pasadena, CA USA

‡Fermilab

Design of the prototype SSR1 Cryomodule

SSR1 cryomodule – Top assembly Conceptual design: completed Final design: ~80% completed

SSR1 coldmass

Conceptual design: completed Final design: ~80% completed

SSR1 string assembly

Final design: 100% completed Procurement: 100% completed Assembling: completed in FY16

0

NO.

SSR1 String Assembly: design features

SSR1 String Assembly in cleanroom

Key aspects:

- All cavities qualified bare and then jacketed with power coupler before string assembly
- Particle-free assembly in cleanroom class 10 (ISO 4)
- Alignment of cavities (electric axis) and magnets (magnetic axis) with a datum.
- Handling of the string assembly (minimum deformations)

SSR1 Cavities: requirements

Table 1: Cavity operational and test requirements

Value
$325\mathrm{MHz}$
$\pm 20\mathrm{Hz}$
$12\mathrm{MV/m}$
$> 5 \cdot 10^9$
$2\mathrm{MeV}$
$5\mathrm{W}$
$< 25\mathrm{Hz}/\mathrm{Torr}$
$\pm 10\%$
$1.8 \div 2.1 \mathrm{K}$
$16 \div 41 \mathrm{mbar} (\mathrm{differential})$
$2\mathrm{bar}$ at $293\mathrm{K},4\mathrm{bar}$ at $2\mathrm{K}$
$6 \mathrm{kW} (\mathrm{CW}, \mathrm{operating})$
$< 10^{-10}\mathrm{atm}\cdot\mathrm{cc/s}$

SSR1 and SSR2 – a closer look..

Active and Passive control for SRF cavities

Active only: Constant compensation even without large perturbations Passive + Active: Compensation only during large perturbations

Active controls

- Compensating the effects of perturbations
- Passive controls (Environment)
 - Reducing perturbations
- Passive controls (Cavity Design)
 - Reducing sensitivity of cavity to perturbations (LFD, Mechanical Resonances, df/dP)

11 November 2015

🛟 Fermilab

Passive Control: Sensitivity to He bath pressure (df/dP)

- Cavity walls deform proportionally to the increment of pressure in the liquid Helium.
- Changes in the cavity RF volume produce frequency shifts that can be positive or negative depending on the shape of deformation
- Slater's rule: $\Delta f = k \int (\varepsilon_0 E^2 \mu_0 H^2) dV$

29 L. Ristori | SRF Development for PIP-II

11 November 2015 🚰 Fermilab

Minimizing He pressure sensitivity

Options for reducing df/dP

- Reduce deformations of cavity walls
 - This approach is widely utilized and easy to implement (increase cavity wall thickness, increase number/size of stiffeners)
 - Drawback is a general increase in cavity stiffness and in most cases an increase in tuning resistance (dF/df)
 - Sometimes impractical to achieve df/dP=0
- Balance deformations of cavity walls
 - This method is less intuitive and requires a systematic approach
 - The specific behavior of the cavity needs to be understood
 - Opportunity to achieve df/dP=0
 - Keep tuning resistance under control

Balance deformations

2015

SSR1 Cavities: pressure sensitivity

 $A_1(x_1 + x_2) + A_2(x_3 + x_4) + (q_1 + q_2) = 0$

Self-compensated system --> Passive compensation No active control to mitigate the pressure fluctuations

PIP-II requirements: $-25 \le df/dp \le 25 Hz/Torr$

	df/dp [Hz/Torr]	S106	S107	S108	S109	S110	S111	S112	S113	S114	
R	Bare cavity (with transition ring)	-564	-561	-553.5	-555.1	-568.8	-525.8	-524.6	-544.7	-557.2	A BL
Neasured	With He Vessel (without Tuner)	8	8	-1.2	5.4	7.9	2.7	9.0	6.3	10	
V	Fully integrated	4*	4	0*	2*	4*	2*	5*	3*	5*	

🛟 Fermilab

* Not measured yet (best guess)

SSR1 Cavities: design features

Electromagnetic Design

- Shape optimization
- Multipacting analysis
- Higher order modes
- Kick analysis
- Multipole effect
- Pressure Sensitivity
- Lorentz force detuning

Mechanical Design

- Niobium shell design
- Vessel design
- Shape optimization
- Pressure Rating
- Stiffening and detuning
- Modal analysis
- Tuner Design

The parallel approach in performing RF/Mech analyses benefits the final design...

Pressure Safety

- We designed spoke resonators to reach 2 bar (RT) and 4 bar (CT) meeting applicable US safety codes, ASME, B&PV, for complex shapes <u>extensive FEA necessary</u>
- <u>Von Mises stresses may appear higher than yield in certain locations (see image), don't be scared</u>, depending on the specific case, it may be OK!

We must comply with the ASME Boiler and Pressure vessel code and determine the pressure rating of each SRF resonator

Division 1 vs. Division 2 of Chapter VIII:

Division 2 allows utilizing complex shapes without limitations in principle, it generally results also in thinner walls of the vessels. We decided to follow this approach for the production cavities.

The **Design-by-Analysis methodology** utilizes the results from *finite element analysis* to assure:

1. Protection against plastic collapse

avoid unbounded displacement in each cross-section of the structure due to the plastic hinge

- Elastic stress analysis method
- Elastic-plastic stress analysis method

2. Protection against collapse from buckling

buckling is characterized by a sudden failure of a structural member subjected to high compressive stress, where the actual compressive stress at the point of failure is <u>less</u> than the ultimate compressive stresses that the material is capable of withstanding.

- Elastic stress analysis (Linear buckling)

3. Protection against failure from cyclic loading

- Elastic ratcheting analysis method
- 4. Protection against local failure (i.e. joints)
 - Elastic-plastic analysis under the achieved MAWP

ASME Pressure Rating

The table summarizes the results obtained by simulations performed following the Div 2, Part 5 directions. It **shows** that the desired MAWP is achieved both at RT and CT.

ASME Pressure Rating - Results

Protection Against Plastic Collapse:

Load Combination: 2.4 (P+D)

The <u>elastic plastic stress analysis</u> at 293K shows that the plastic collapse occurs on the *area of the Endwall* (bellows side), connected to the *Daisy ribs*, under a pressure of 5.35 bar (77.6 psi)

$$MAWP_{RT} = \frac{5.35bar}{2.4} = 2.23bar (32.3 psi)$$

Protection Against Collapse from buckling:

Load Combination: $(P+D+T_1+T_2)$

The load is applied in two steps, first the cooldown and then all other loads. The element that buckle first determines the MAWP for this failure mode. In the case under analysis the buckling occurs at the cavity

$$MAWP_{RT} = \frac{27.9bar}{2.5} = 11.2bar \ (162.4 \ psi)$$

Trimming before final weld

- Frequency is adjusted by trimming the outer conductor incrementally, before final equator welds.
- Ideal cavity will hit target frequency and gap size

Operation	Shift (kHz)	Freq. (MHz)
End-wall Welding	Negligible	323.975
BCP (120-150 µm)	+ 160	324.135
BCP (20-30 µm)	+ 40	324.175
Ring + Jacketing	+ 500	324.675
BCP (20-30 μm)	+ 40	324.715
Cool-down	+ 385	325.100
Tuner Engaged	- 100	325.000

Trimming and Plastic Tuning

ᅷ

- <u>Frequency</u> AND <u>gap size</u> can be achieved by using wisely the plastic tuning process.
- Trimming should be interrupted at the crossing of the "halt trimming" line, not at a fixed frequency

kHz/mm	measured (avg)
trimming	345 (320-370)
plastic tune	465
elastic tune	585

Elastic and Plastic sensitivities are different due to different deformed shapes

Shifts due to final welding (Roark)

- Cavities so far showed negligible shifts (E and B shifts compensate)
- Large shift of #105 due to repeated welds on one side

🗄 Fermilab 🎯 🖻 🕅

Permanent tuning (FNAL)

Pushing

-SSR1-105

Leak Check Pulling

20

0

327.000

326.500

326.000 325.500

325.000

324.500

324.000 323.500 323.000

Frequency [MHz]

(T. Khabiboulline, M. Hassan, P. Berrutti)

Importance of work hardening before installation in helium vessel.Elastic tuning range is increased by several times.Work hardening is directional.

60

40

80

100

120

140

Drift tube offset measurements

- Datum axis is defined with center points of Datum A1 and A2 near beam-pipe flanges
- At 6 locations (A-F) the center points are computed
- Offsets are given relative to Datum axis
- Caution: Cordax reports show an offset 2x larger, this is intended as the tolerance region.

L. Ristori | SRF Development for PIP-II

Cordax Measurements on 12 SSR1 Resonators

D. Passarelli, M. Hassan, P. Berrutti

Jacketing operations

Thermal cameras insertion tubes (above)

Screenshot of remote connection from FNAL

Welding inch-by-inch on 6 mm thick steel Large fixtures needed to control warping

Shifts caused by jacketing

Processing/Testing steps (ANL, FNAL)

1.	Inspection – RF & Optical
2.	BCP 120-150 µm (flip half-way)
3.	HPR
4.	600 °C, 10 h (< 5°C/min ramp rate)
5.	RF Tuning
6.	BCP 20-30 µm
7.	HPR (horiz + vert)
8.	Assemble
9.	Evacuate + 120 °C, 48 h
10.	Vertical Test
11.	Helium Vessel Dressing
12.	HPR
13.	BCP 20-30 µm
14.	HPR
13.	Assemble
14.	Evacuate + 120 °C, 48 h

- 15. Horizontal Test
- 16. Ready for String

(<300°C)

Hydrogen Degassing

- 600 C
- 10 h
- < 5 C/min
- Concern about baking vacuum flanges at 800 C due to Cu-Braze joints

Installation on Top-Plate

L. Ristori | SRF Development for PIP-II

Vertical Tests of 10 SSR1 Cavities (bare)

Example of S108 – 1st and 2nd pass

courtesy: A. Sukhanov

Multipacting Processing vs. 120C Bake

SSR1 325MHz Coupler: Status

Design specifications

- Beam power gain per cavity (CW): ~2 kW.
- Maximum design power (PIP-II, 5 mA): ~30 kW.
- One ceramic window at room temperature.
- No external adjustment.
- Air cooled center conductor.

325 MHz coupler anatomy

Prototype Couplers

Three prototype couplers successfully tested to 8.5 kW at room temperature. One prototype coupler tested in STC at the maximum design power of 30 kW.

Production couplers

There is some delay on the production couplers because the design was changed to address several issues.

All 10 production couplers (cold-ends) will arrive at Fermilab in mid-December.

They are needed for qualification of cavities in STC.

Status of 325 MHz Main Couplers for PXIE, S. Kazakov, Proceedings of LINAC2014, Geneva, Switzerland

SSR1 325MHz Coupler: prototypes

Warm Outer conductor Electro-deposited bellows (Cu-Ni layers)

Warm Inner conductor

Cold-end assembly

🛟 Fermilab

RF test stand

Test Stand for 325 MHz Power Couplers, S. Kazakov, Proceedings of LINAC2014, Geneva, Switzerland

SSR1 325MHz Coupler: installation

The cold-end of the coupler will be assembled on the cavity in a cleanroom (Class 10) using a specific tool and procedure for a "particle-free installation".

Unity coupler was replaced with prototype high-power coupler

Fully Integrated Test in the Spoke Test Cryostat

Results:

- Design of coupler validated: Prototype successfully tested to maximum power 30 kW.
- Design of Tuner validated...
- Jacketed cavity exceeds the specifications...

The jacketed SSR1 cavity (S1H-NR-107) dressed with prototype coupler and tuner was tested in the Spoke Test Cryostat at 2K. The performance of the power coupler and the frequency-tuning system were tested making sure they didn't interfere or degrade the performance of the cavity.

11 November 2015

🛟 Fermilab

Testing at STC: Q₀ vs. E_{acc} curve (S1H-NR-107)

No Q_0 degradation compared to VTS results \rightarrow Manufacturing process of the jacketed cavity validated.

PIP-II specification: $Q_0 > 5 E9 at$ $E_{acc} = 12MV/m$

🚰 Fermilab

<u>Result of Cold Tests of the Fermilab SSR1 Cavities</u>, A. Sukhanov et al., Proceedings of LINAC2014, Geneva, Switzerland

11 November 2015

Testing at STC: Cavity Pressure Sensitivity (@ 2K)

Pressure sensitivity measured with Tuner engaged (as in operating condition)

PIP-II specification $df/dp \le 25 Hz/Torr$

Design procedure to minimize the pressure sensitivity of the jacketed cavity with tuner is validated.

Estimated at room temperature: df/dp = 4 Hz/Torr

🛟 Fermilab

RF Tests of Dressed 325 MHz Single-Spoke Resonators at 2K, A. Hocker et al., Proceedings of LINAC2014, Geneva, Switzerland

Testing at STC: Multipacting

<u>Simulation of Multipacting in SC Low Beta Cavities at FNAL</u>, G. Romanov et al., Proceedings of IPAC 2014, Richmond, VA, USA <u>Multipacting Simulations of SSR2 Cavity at FNAL</u>, P. Berrutti et al., Proceedings of NA-PAC 2013, Pasadena, CA, USA

🛟 Fermilab

SSR1 Tuner: Requirements and data

Parameter	Value	Notes
Total Frequency Range	>135 kHz	From FRS
Frequency Resolution of stepper motor	< 20 Hz	From FRS
Piezo Frequency Range	> 1 kHz	From FRS
Tuner Passive spring constant	30 kN/mm	Derives from df/dP requirement
Sensitivity of end-wall	540 kHz/mm	Simulation/Experimental
Cavity wall spring constant (K _{cav})	30 kN/mm	Simulation/Experimental

Parameter	Value	Notes
Stepper motor max force	± 1300 N	Symmetrical
Stepper motor resolution*	0.1 µm (100 nm)	At interface with 2 nd lever
Piezo stroke @ RT	$64 \ \mu m \pm 2\%$	Measured
Piezo stroke @ operating T	15µm (25% of RT)	
Piezo max rated force	3360-5040 N	$4200 \text{ N} \pm 20\%$ (blocking force)
Piezo max operating force	2688 N	3360 · 80%

Parameter	Value	Notes
Motor Travel at beam pipe	> 0.25 mm	135/540 kHz
Piezo Travel at beam pipe	> 1.85 μm	1/540 kHz
Maximum Force at beam pipe	7500 N	0.25 mm · 30000 N/mm
Motor Resolution at beam pipe	< 37 nm	20/540000 mm
Motor Tuning Efficiency (Te)	< 37 %	37/100 nm
Motor Mechanical Advantage (M)	> 5.8	7500/1300 N, picked 6
Piezo Tuning Efficiency (Te)	> 12 %	1.85/15 μm
Piezo Mechanical Advantage (M)	> 1.4	0.5 [*] · 7500/2688 N, picked 2
Piezo Elastic Efficiency (E)	> 24 %	2 · 12 % (Te · M)

SSR1 Tuner

Specification

- Fine tuning >1 kHz
- Coarse tuning > 135 kHz
- Made of SS316L

Double lever Tuner

- Well known technology
- Adjustable mechanical advantage
- Piezos and motor in series
- Piezos away from the beam
- Estimated efficiency and stiffness
- Respect of the following maximum forces at the actuating components:

Parameter	Value
Stepper motor with gear box	
Max force	1300 N
Resolution	0.1 µm
Piezo	
Stroke (x_f) at 293 K	68 µm
Stroke (x_f) at 20 K	15 µm
Max operating force	2700 N
Min operating force	840 N

Schematic representation of the working principle of the SSR1 tuner.

assembled on the SSR1-G3 cavity

SSR1 Tuner Mechanism: Passive and Active Device, D. Passarelli et al., Proceedings of LINAC2014, Geneva, Switzerland.

SSR1 Tuner: Testing

SSR1 Tuner Mechanism: Passive and Active Device, D. Passarelli et al., Proceedings of LINAC2014, Geneva, Switzerland.

11 November 2015

SSR1 Tuner: Testing

Studies of microphonics control of the SSR1 cavity have being carried out using this tuner mechanism.

Performance of the Tuner mechanism for SSR1 Resonators During Fully Integrated Tests at Fermilab, D. Passarelli et. al., Proceedings of SRF2015, Whistler, Canada, THPB061

🛟 Fermilab

SSR1 String Assembly: Beam-line vacuum

High vacuum level (< 5E-5 Torr) is needed inside the beam line volume before the introduction of liquid helium in less than 12 hours.

The high-vacuum level at room temperature can be achieved pumping down bv the beam ports only. Furthermore, simulations performed on the entire string with clean components show that the achievable pressure would be of 7E-8 Torr pumping from both ends.

Measurements (very conservative conditions)

Vacuum simulation (best scenario)

High-vacuum Simulations and Measurements on the SSR1 Cryomodule Beam-line, D. Passarelli et al., Proceedings of SRF2015, Whistler, BC, Canada

11 November 2015

SSR1 String Assembly: Alignment (in progress...)

Alignment specifications (ED0001316)

Transverse cavity alignment error, mm RMS	<1
Angular cavity alignment error, mrad RMS	≤10
Transverse solenoid alignment error, mm RMS	<0.5
Angular solenoid alignment error, mrad RMS	<1

Referencing the electric axis of the cavity to external fiducials (beadpull + optical measurements + laser tracker). Error: ~ $\pm 150 \mu m$

Estimation of cavities and solenoids misalignments due to the cooldown (293K --> 2K)

C: Static Structural

Directional Deformation Type: Directional Deformation(Y Axis) Unit: mm Global Coordinate System Time: 1 9/23/2015 2:17 PM

The positioning of the components in the string assembly will be defined starting from these results...

SSR1 String Assembly: components available

All components of the SSR1 string assembly were ordered and most of them are received.

Jacketed SSR1 cavities (4 Type-A, 4 Type-B)

4 Solenoids

4 BPMs

Production Couplers will arrive in mid-December

All Hardware and Seals

Interconnecting Bellows

Warm-end transitions and gate valves

Tooling

Other cryomodule components received as of today..

Vacuum vessel

Support Posts

Prototype Tuner mechanism

Strong-back

