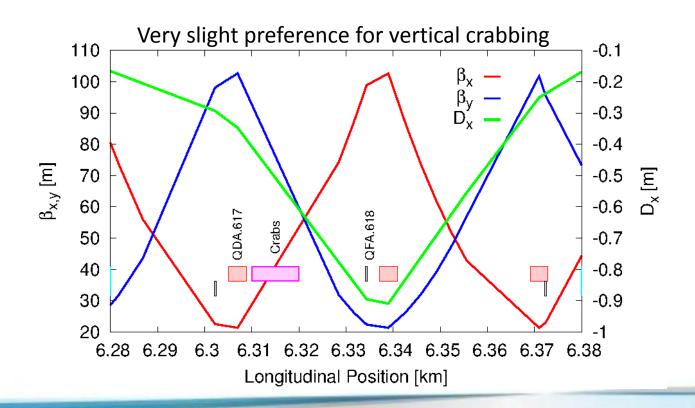
Test Program Summary

- In-situ cryomodule testing in out-of-beam position
- RF commissioning with low-intensity beam, 1-12 bunches
 - Establish proper RF parameters (operating frequency, amplitude, and phase)
 - Verify that CCs are transparent (cavity counter-phasing and detuning)
- High intensity single bunch up to 4x72 trains
 - Impact on cavity performance (including transient behavior), impedance, stability & machine protection as a function of beam current; interlocks
 - Verify cavity stability over many hours (relevant for LHC physics fill)
- Long-term behavior of coasting beams in the SPS with 1-bunch
 - Study the effects of cavity drifts, emittance growth, non-linear effects such as RF multipoles

Minimum Test Program

- Vacuum & Cryogenic aspects
 - We depend on NEG coating on either side to keep the pressure
 - The cryo limit will determine the operational field
 - Moving a 3 Ton object with 2K He
- Inject & capture 1-12 bunches 10^{10} - 10^{11} p/b
 - Beam properties well known, effect of strong impedance might be visible
 - Cavities always on (5-10% of nominal) to ensure RF feedback
- Amplitude and phase scan
 - Input/Output power to determine the electrical center + correct crabbing phase and counter-phasing for transparency & re-phasing during collisions
 - Have to test a minimum set of RF controls for LHC operational cycle
- Measurements with other instruments (HT monitor, BPMS ...)

We are planning ½ day SPS test program meeting to go through the detailed commissioning and testing in SPS at the end of Nov.


SPS-LSS6

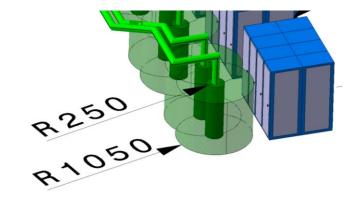
Machine Parameters

Energy = 55, 120, 270 GeV $\beta_{x,y} = 40, 80 \text{ m}$ Dispersion = -50 cmAvailable length ~ 9.5 m

Instrumentation

Longitudinal: BCT, Fast BCT, BSRT Transverse: Wire scanners, BGI Trajectory: 216 BPMs, 4 LHC BPMs, Damper PUs Intra-bunch: Head-tail monitors, Optical PU

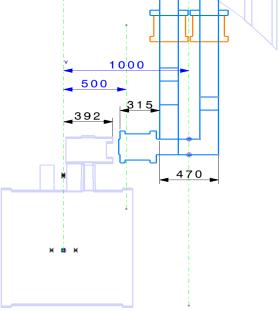
Overall Activity Planning


SPS	2015 YETS	1 st – 2 nd Quarter	3 rd -4 th Quarter	2016 EYETS	1 st – 2 nd Quarter	3 rd -4 th Quarter	2017 YETS
	False floor & reinforcement inspection	BA6 Surface clean up & Preparation for RF		Install: RF & Cryo Lines, Movable table, Cabling & Y-chamber+valves	RF, Cryo, Vacuum Tests Movable Table(?)		Install CM1 Vacuum commissioning
	Uninstall 2K pumps from LSS4	Design of y-chamber and vacuum Cryo equipment procurement		Other services: Cooling, ventilation, water, electricity & Ethernet			DQW Cryomodule Cooldown + RF Commissioning + Movement

118	2015 YETS	1 st – 2 nd Quarter	3 rd -4 th Quarter	2016 EYETS	1 st – 2 nd Quarter	3 rd -4 th Quarter	2017 YETS+After
SN	Cryo M7 Bunker Preparation		DQW CM1 Integration, 2- cavity cryomodule		DQW Dressed Cavities Preparation	DQW CM1 assembly & Horizontal testing	
		High Power & Low level RF Prep SM18 Cryogenic validation		LLRF & Controls Preparation for Hor testing			RFD Dressed Cavity Preparation

RF Distribution

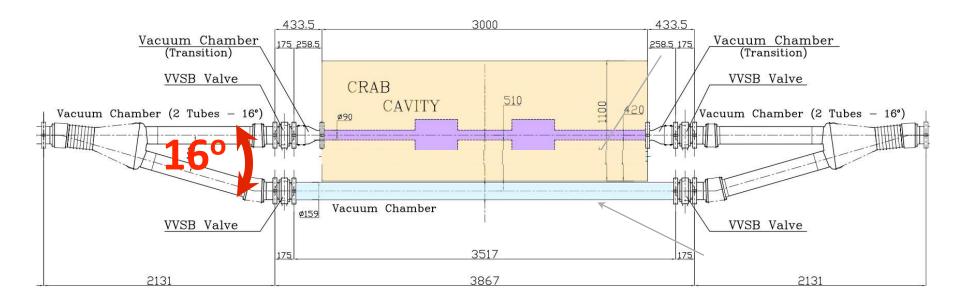
Pics shown as in LHC, for illustration Courtesy (S. Maridor et al.)



Surface/Cavern (Tetrode + HVPS) 3 LLRF (faraday cage), 1 SSA, 1 PLC, 1 spare racks

Circulator/load placement TBD (**surface** or tunnel)

Cryomodule interface, transpose the LHC concept with additional 0.5m movement capability



Beamline Vacuum

* Preliminary for illustration only

- 16°Y-chamber with multiple vacuum sectorization & NEG ready for EYETS
 - NEG coating on either side of the module with differential pumping
 - Operating pressure $\sim 10^{-10}mbar$
- Movable table 510 mm transversely in ~20 min (EYETS ?)

