

Welding requirements and other issues

Carlo Zanoni & Paula Freijedo on behalf of the CRAB Cavity Collaboration

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Index:

- Summary Quality Welding Requirements
- Summary Welding Qualifications
- Summary Test Performed at CERN

Summary quality welding requirements:

- According to the EN13445 and due to the lack of any specific standard for niobium welds, the following standard has been used to assess the quality level of imperfections:
 - **EN ISO 13919-2:** Electron and laser beam welded joints. Guidance for quality levels for imperfections-Aluminium and its weldable alloys.
- The table 7 was issued in order to comply with other requirements not covered by this standard (Cryogenic and RF), based on our experience until 3mm of thickness, with this exotic material, nor steel or aluminium, and with the main purpose of avoiding the repairs of these welds:
 - TABLE 7 from E.S with additional restrictions

➤ Table from the standard ISO 13919-2 level B:

HC

Table 2 — Imperfections Table 2 (continued)													
				Limits	for imperfections for quality	levels:					Limits	for imperfections for quality	y levels:
No	Imperfection, designation	EN ISO 6520-1	Remarks	moderate D	intermediate C	stringent B	No	Imperfection, designation	EN ISO 6520-1 reference	Remarks	moderate D	intermediate C	stringent B
1	Cracks	100	All types of cracks except micro cracks (less	Not permitted	Not permitted	Not permitted	5	Shrinkage cavity	202		Use limits for porosity		
_			than 1 mm ² crack area). For crater cracks see No 2.			N. 4	6	Crater pipe	2024		h ≤ 0,15 t max. 2 mm	h ≤ 0,1 <i>t</i> max. 1,5 mm	h ≤ 0,05 t max. 1 mm
2	Crater cracks	104		Local crater cracks permitted	Local crater cracks Permitted	Not permitted	7	Solid inclusions	300	Only oxide inclusions permitted	Use limits for porosity		
3	Porosity and gas	200	The following conditions and limits for imper-					Lack of fusion	401		h < 0.25 a	Not permitted	Not permitted
	pores		fections shall be fulfilled:				1	Lack of fusion			max. 1 mm	Not permitted	Not permitted
			a) Maximum dimension <i>I</i> (<i>I</i> ₁ , <i>I</i> ₂ or <i>h</i>) for a single pore;	/or <i>h</i> ≤ 0,5 <i>t</i> max. 6 mm	/or h ≤ 0,4 t max. 5 mm	/or <i>h</i> ≤ 0,3 <i>t</i> max.4 mm	9	Incomplete	402	Lack of penetration h ₁ for full penetration welds	h ₁ ≤0,25 s	Not permitted	Not permitted
			b) Maximum dimension of the summation of the	Electron beam welding:	Electron beam welding:	Electron beam welding:	1	penetration			max. 1 mm		
			projected area of the imperfections.	f≤ 6 %	f≤3%	<i>f</i> ≤ 1,5 %	20.00						
			Projection is in a direction parallel to the	Laser beam weiding: f≤ 10 %	Laser beam weiding: f≤6%	Laser beam weiding: f≤ 3 %				⁹ 1			
			surface and perpendicular to the weld axis. It relates to an area t multiplied by weld length										
			where weld length is the actual length of the							Welding into backing:			
			weld or 100 mm, whichever is the smaller.										
			/1 ++							5			
			12 1							"1 <u></u> 4			
										Partial penetration may be specified for certain			
			laantiin	(hou			•			The limits relate to deviations h_1 , resulting in			
										penetrations less than specified. Max.	h < 0.25 s	$h \le 0.2 s$	b ≤ 0.15 s
			Table 2 ((continued)									
				Lim	its for imperfections for qua	ality levels:				Table 2 (co	ontinued)		
1	No Imperfection, ENISO Remarks moderate intermediate stringent designed by the stringent of the stringent							Limits for imperfections for quality levels					
	deelgnaden	reference	e				No	Imperfection, designation	EN ISO 6520-1	Remarks	moderate D	intermediate C	stringent B
4	Localised (clustered) a	2013 nd 2014	The following conditions and limits f imperfections shall be fulfilled:	for					reference				_
	linear porosity						9			Sealing run:			
			 a) Maximum dimension 7 (h, h₂ or h) for a single pore; 	$for h \le 0,5 t$ max. 6 mm	/or <i>h</i> ≤ 0,4 <i>t</i> max. 5 mm	$f \text{ or } h \le 0.3 t$ max. 4 mm							
1			b) Maximum dimension of the summation of the							1/1////////////////////////////////////			
led to			projected area of the imperfections. Projection is	s f≤ 15 %	f≤5%	f≤2 %							
ġ			in a direction parallel to the surface and perpendicular to the weld axis. It relates to an				28 MARC			Welding of clad materials. Followed by back			
1			area t multiplied by weld length, where weld				10			gouging and arc welding from clad side.			
3			length is the actual length of the weld or 100 mm whichever is the smaller.	n,			CER			The second se			
1			In addition:				2						
Dee													
1			c) The distances ∆L between the individual pore in clustered or linear porosity shall be assessed	*			10	Importactions		Applicable only for wolding with filler metorials	Line limite for ore welding	Line limite for are welding	Line limite for one wolding
			Any two pores closer than:	0,25 t	0,5 t	0,5 t		specific to fille	t –	Imperfections Nos 12, 14, 16, 17, 18 and 22	see EN 30042, level D.	see EN 30042, level C.	see EN 30042, level B.
			shall be considered a combined porosity.	max. 5 mm	max. to mm	max. 15 mm		welds		according to EN 30042. Limits for imperfection			
			d) Combined provide in promitted, provided the							application and shall be specified individually	7		
			affected weld length L _c is less than:	$L_{c} \leq 2 t$	$L_{c} \leq t$	$L_c \leq t$				for each particular case.			
							11	Undercut	5011	h	h≤ 0,15 t	h ≤ 0,1 t	h≤ 0,05 t
			······································						5012		max. 2 mm	max. 1,5 mm	max. 1 mm
			1/////////////////////////////////////										
			L _C							Fuisaung Deam:			
- 1				1	1	1	1	1	1		1		1
			Affected weld length L _c for combined porosi	ty.						te et te et te et			
			Affected weld length L _c for combined porosi Use d) acceptance limit.	ty.							<i>h</i> ≤ 0,3 <i>t</i>	<i>h</i> ≤ 0,2 <i>t</i>	<i>h</i> ≤ 0,1 <i>t</i>
			Affected weld length L _c for combined porosi Use d) acceptance limit. (con	ty. htinued)							h ≤ 0,3 <i>t</i> max. 2,5 mm if	h ≤ 0,2 t max. 2 mm if	h ≤ 0,1 <i>t</i> max. 1,5 mm if
	Hig-	8 85	Affected weld length L _c for combined porosi Use d) acceptance limit. (con	ty. Itinued)							$h \le 0,3 t$ max. 2,5 mm if $I \le 2 b$ and $\triangle L \ge 5 b$	$h \le 0,2 t$ max. 2 mm if $l \le 2 b$ and $\triangle L \ge 5 b$	h ≤ 0,1 t max. 1,5 mm if I ≤ 2 b and ∆L ≥ 5 b

Table 2 (continued)							Table 2 (continued)						
		Limits for imperfections for quality levels:			л Г				Limits for imperfections for quality levels:				
No	Imperfection, designation	EN ISO 6520-1 reference	Remarks	moderate D	intermediate C	stringent B	N	o Imperfection, designation	EN ISO 6520-1 reference	Remarks	moderate D	intermediate C	stringent B
12 Usersed to CES	Excess weld metal	502	·	h ≤ 0,2 mm + 0,3 t max. 5 mm	h ≤ 0,2 mm + 0,2 t max. 5 mm	h≤0,2 mm + 0,15 t max.5 mm	Chammand to - O	filled groove	511	i <u>vi</u>	h≤0,15 t max. 2 mm	h≤0,1 t max. 1,5 mm	h≤0,05 t max. 1 mm
13 11 11 11 11 12 12 13 13 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Excessive penetration	504		h ≤ 0,2 mm + 0,3 t max. 5 mm	h ≤ 0,2 mm + 0,2 t max. 5 mm	h≤ 0,2 mm + 0,15 t max. 5 mm	11 Contract No. Base	7 Root concavity	515	1	h ≤ 0,3 t max. 1 mm	h ≤ 0,2 t max. 0,5 mm	h ≤ 0,1 t max. 0,5 mm
aded: 2011-05-18	Linear misalignment	507	The limits relate to deviations from the correct position. Unless otherwise specified, the correct position is that when the centerlines coincide.	h ≤ 0,25 t max. 3 mm	h ≤ 0,15 t max. 2 mm	h ≤ 0,1 t max. 1 mm	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 Shrinkage groove	5013	Pulsating beam:	$h \le 0.15 t$ max. 2 mm	$h \le 0,1 t$ max. 1,5 mm	$h \le 0.05 t$ max. 1 mm
15	Sagging	509	The excess penetration may, to some extent, compensate for the sagging. Only for welding of thin plate materials where $b \ge 0.5t$ and $t \le 2$ mm.	$h_1 \le 0,3 t + h_2$ max. 0,5 t	$h_1 \le 0,2 \ t + h_2$ max. 0,3 t	$h_1 \le 0,1 t + h_2$ max. 0,2 t					$\max_{I} \sum_{j \in I} \sum_{k=1}^{N \leq N-j \leq 1} \max_{j \in I} \sum_{k=1}^{N \leq N-j \leq 1} \sum_{k=1}^{N \leq N-j < N-j <$	$n \le 0, 2 \ t$ max. 2 mm if $l \le 2 \ b_r$ and $\Delta L \ge 5 \ b_r$	$I \le 0, i$ f max. 1,5 mm if $I \le 2 b_i$ and $\Delta L \ge 5 b_i$
	(continued)												

Limits for imperfections for quality levels: EN ISO 6520-1 reference No Imperfection, designation moderate D intermediate C stringent B Remarks 19 Deviation from specified joint *h*₁≤0,15 *s*₁ max. 1 mm *h*1≤0,1 *s*1 max.0,5 mm $h_1 \le 0.05 \ s_1$ max. 0.3 mm <u>s1</u> <u>h1</u> axis 20 Weld spatter 602 Acceptance depends on applications. Spatter is assumed to be of identical composition to the base and filler metals.

Table 2 (concluded)

High Luminesity LHC

Table from our E.S with restrictions for RF- Cryogenic and others...

EN ISO 6520-1 reference	Imperfection designation	Remarks	Limits for imperfections
5011 5012	Undercut	<u>↓</u> <u>↓</u>	h max 0.1 mm
504	Excessive penetration	↓ ▲ <u>h</u>	h max 0.1 mm
507	Linear misalignment	↓ ↑ <u>h</u>	h max 0.1 mm
509	Sagging		h max 0.2 mm
511	Incompletely filled groove	h +	h max 0.2 mm
515	Root concavity		h max 0.1 mm
5013	Shrinkage groove	↑ <u>h</u> → ↓ ↓	Not acceptable
602	Weld spatter		Not acceptable

Summary Welding qualifications: https://edms.cern.ch/document/1536724/1

_					
		Coupon	Received	Qualified	Observations
	1	Nb/Nb thickness 3 mm + beam tube piece (weld performed from one side) to qualify the longitudinal of the beam tube.	Yes (from <u>Niovawe</u>)	Yes	Coupon needed only for beam tubes, already produced.
	2	Nb/Nb thickness 3 mm + beam tube piece (weld performed from both sides) to qualify the circular of the beam tube.	Yes (from <u>Niovawe</u>)	Yes	Coupon needed only for beam tubes, already produced.
	3	Nb/NbTi thickness 6.5 mm + beam tube piece (weld performed from both sides) to qualify the dissimilar joint of the beam tube between niobium tube & NbTi ring.	Yes (from <u>niovawe</u>)	Yes	Coupon needed only for beam tubes, already produced.
	4	Nb/Nb thickness 4 mm (weld performed for one side) to qualify the circular of the cavity: 2 plates full penetration in 4mm, approx. dimensions each piece: width (100/150) mm x (250/300)mm of length.	Yes (from <u>Niovawe</u>)	No (Not compliant with RF restrictions)	Coupon request to J-Lab. See the details in the following page
	5	Nb/Nb thickness 4 mm (weld performed for both sides) to qualify the longitudinal and circular of the cavity: 2 plates full penetration in 4mm, approx. dimensions each piece: width (100/150) mm x (250/300)mm of length.	Yes (from <u>Niovawe</u>)	No (Not compliant with RF restrictions)	Coupon request to J-Lab See the details in the following page.
	6	Nb/Nb thickness 3mm to qualify the circular extremity assembly to the cavity (welded from two sides): 2 tubes (plates rolled), full penetration in 3mm of thickness (3.15mm is ok), diameter between 60 - 100mm & total length approx. 150mm. One of the tubes should be constrained to simulate the presence of the cavity.	No		Coupon request to J-lab See the details in the following pages.
	7	Dissimilar weld NbTi/Nb with partial penetration to qualify the joint between NbTi tuner support & Niobium bowl: Coupon as the real geometry.	No		Coupon request to J-Lab.

COUPONS: According to ASME IX paragraph QW-215.1: the WPS qualification test coupon shall be prepared with the joint geometry duplicating the one used in production. **If the production weld includes a lap-over** (completing the weld by rewelding over the starting area of the weld), such lap-over shall be included in the WPS qualification test coupon.

NOTES (others):

- 1. 4 samples are still needed to qualify all welds
- 2. Third party is not required
- 3. The qualification criteria for the mechanical testing is according to ASME
- 4. The samples shall be in compliance with the RF restrictions.

Summary test performed at CERN

Nb weld for HOM (DQW): under qualification

No superficial defects found, compliance with the table 7 and the standard EN13913-2 level B:

- 511: Completely filled grove
- 5011 & 5012: No Undercut

Other defects will be measured in the metallographic examination

Preliminary results in 4mm SATISFACTORY, weld feasible.

Longitudinal in 4mm

Nb/Nb55Ti weld

Penetration depth of \approx 2 mm achieved as specified

No evident diffusion of Titanium into RF surface, no significant weld distortion

- Actions and Conclusions:

- RF side is currently studying the impact on the frequency caused by the geometry and dimensions of the welds concerning the table 7.
- Re-calculations to reduce the thickness until 3mm in the weld areas. This reduction should be smooth with a slope according to the Codes.

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

