Test beam experiments with the CALICE scintillator tungsten HCAL

Eva Sicking (CERN)

First SAS @ LHC meeting October 1, 2015

Introduction

Calorimeters for future collider experiments

- Detector development for experiments at future colliders
- Jet energy resolution goal
 - 4-3 % at ILC
 - 5-3.5 % for 50 GeV-1 TeV jets at CLIC
- Possible solution:

Particle Flow Analysis

- Low mass tracker for charged particles
- High granularity ECAL for photons, electrons
- High granularity HCAL for neutral hadrons
- Clever reconstruction algorithms

Aim of calorimeter test beam experiments

- Characterisation of novel calorimeter prototypes
 - Linearity: Erec versus Ebeam
 - Resolution: $\sigma_{E_{rec}}/E_{rec}$

• Characterisation of particle showers

- Shower shapes
- Shower substructure
- Time structure

- Electro-magnetic processes
 - Well understood
 - Cross check detector calibration
 - Understand requirements for details needed in simulations
- Hadronic nuclear interactions
 - Not a priori understood
 - Validate models of hadronic showers

Introduction

CALICE prototypes for highly granular calorimeters

		acker <mark>ECAL</mark>	HCAL	Muon s	ystem
	Silicon ECAL	Scintillator ECAL	Analog HCAL	Semi-Digital HCAL	Digital HCAL
Readout	Silicon PIN diodes	Scint. strips+ Silicon Photo Multipliers	Scint. tiles+ Silicon Photo Multipliers	RPCs (μMegas)	RPCs (GEMs)
Granularity (mm ³)	$10\times10\times0.5$	$45\times5\times3$	$30\times 30\times 5$	$10\times10\times1.2$	$10\times10\times1.15$
Absorber	W	W	Fe or W	Fe	Fe or W
Layer × thickness (mm)	$10 \times 1.4 + 10 \times 2.8 + 10 \times 4.2$	30×3.5	Fe: 38×21.4 W: 38×10	48×20	Fe: 38×20 W: 39×10

Eva Sicking (CERN)

Introduction

CALICE test beam experiments

- Test beam experiments in 2006-2015 at DESY, CERN, FNAL
- \bullet Prototypes of up to ${\sim}1\,m^3,\,{\sim}2\,m^3$ including Tail Catcher Muon Tracker

CALICE scintillator-tungsten HCAL

- Test beam experiments with W-AHCAL
- Absorber: 1 cm thick tungsten plates
- Active material: 0.5 cm thick scintillator tiles
- Granularity: $3 \times 3 \text{ cm}^2$ in central region, $6 \times 6 \text{ cm}^2$ and $12 \times 12 \text{ cm}^2$ in outer regions
- Readout: Silicon Photomultipliers (SiPM)

Sensitive layer of the AHCAL

Test beam experiments at CERN SPS in 2011

- W-AHCAL (38 layers $\hat{=} 5 \lambda_{I}$) (+ TCMT $\hat{=} 5 \lambda_{I}$)
- $10 \le p_{\text{beam}} \le 300 \, \text{GeV}$
- e^\pm beam/ mixed beam μ^\pm , π^\pm , K^\pm , p
- Publication arXiv:1509.00617 [physics.ins-det]
- → Comparison between data and Geant4 for tungsten HCAL
- $\rightarrow\,$ Limit analysis to momenta $\leq 150\,{\rm GeV}$ to keep leakage effects in W-AHCAL main stack small

Positrons

Positrons analysis

Positron energy sum and linearity

• Data and simulation agree well within systematic uncertainties

• Calorimeter response (visible energy) increases linearly with p_{beam}

Positron resolution

- Implement detector instability measured in data into simulated energy resolution
- Data and MC with detector instability agree well within uncertainties
- Energy resolution well described by $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E[\text{GeV}]}} \oplus b \oplus \frac{c}{E[\text{GeV}]}$
- Include PS data to better constrain the fit
- W-AHCAL PS+SPS: $\rightarrow 2.80 X_0$ per layer $a_{data} = (29.5 \pm 0.4) \% \sqrt{\text{GeV}},$ $a_{sim} = (28.7 \pm 0.5) \% \sqrt{\text{GeV}}$
- W-AHCAL PS: $a_{data} = (29.6 \pm 0.5) \% \sqrt{\text{GeV}}$
- Fe-AHCAL: \rightarrow 1.24 X_0 per layer $a_{\rm data} = (21.5 \pm 1.4) \,\% \sqrt{{\rm GeV}}$

Hadrons

Pion linearity

- Hadron E_{sum} distributions at high p_{beam} have low-energy tail due to leakage
- HP = High Precision: Transports neutrons down to thermal energies, needed for realistic simulation of spallation neutrons in high-A absorbers
- QGSP_BERT_HP describes mean slightly better than FTFP_BERT_HP

Pion resolution

- Energy resolution for π^+ follows $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E[\text{GeV}]}} \oplus b \oplus \frac{c}{E[\text{GeV}]}$
- Stochastic term:
 - W-AHCAL PS+SPS $\rightarrow \sim 0.13 \lambda_I$ per layer
 - $a = (57.9 \pm 1.1) \,\% \sqrt{\text{GeV}}$
 - $a = (51.1 \pm 2.8) \% \sqrt{\text{GeV}}$
 - $a = (54.6 \pm 2.0) \% \sqrt{\text{GeV}}$
 - \rightarrow Gaussian fit function
 - W-AHCAL PS
 - $a = (61.8 \pm 2.5) \,\% \sqrt{\text{GeV}}$
 - \rightarrow standard deviation and mean
 - Fe-AHCAL $\rightarrow \sim 0.13 \lambda_I$ per layer $a = (57.6 \pm 0.4) \% \sqrt{\text{GeV}}$ \rightarrow Gaussian fit function
- $\sigma_E/\langle E \rangle$ lower in MC, by 3-12% for FTFP_BERT_HP, by 10–15% for QGSP_BERT_HP

Pion shower profiles

- Longitudinal profile (from shower start): QGSP_BERT_HP overestimates energy deposition in first part of shower, FTFP_BERT_HP overall slightly better
- Radial profile: Models overestimate energy density in shower core and underestimate the tails, FTFP_BERT_HP better than QGSP_BERT_HP

Eva Sicking (CERN)

Pion shower shapes

- z_{cog} : energy weighted centre of gravity in z-direction $\langle z_{cog} \rangle$ well described by FTFP_BERT_HP, too early showers in QGSP_BERT_HP
- R: energy weighted shower radius: both models underestimate (R), FTFP_BERT_HP better

Kaon energy sum distribution

- Kaon data available at 50 GeV and 60 GeV
- Data, QGSP_BERT_HP and FTFP_BERT_HP agree well for K⁺ energy sum
- Kaon energy showers very similar to pion and proton showers
- $\label{eq:limited} \rightarrow \mbox{ Limited potential for } \pi^+/K^+/p \ \mbox{ separation based on shower} \ \mbox{ shapes only}$

Hadrons analysis

Proton linearity and energy resolution

• Linearity and resolution similar to π^+ results

- QGSP_BERT_HP describes mean slightly better than FTFP_BERT_HP
- $\sigma_E/\langle E \rangle$ lower in MC, FTFP_BERT_HP more close to data

Hadrons analysis

Comparison of response for different particle types

- Quantify compensation level: Compare visible energy in GeV with available energy
- Convert E_{vis} from MIP to GeV based on e^+ linearity fit parameters
- Hadron and positron response agree up to approximately 60 GeV
- Behaviour reproduced by MC

Eva Sicking (CERN)

Extrapolation to SAS

Extrapolation to longer HCAL

• Default W-AHCAL with 38 layers ($\sim 5\lambda_{I}$, 1 m depth) • Extrapolated W-AHCAL with 100 layers ($\sim 13\lambda_{I}$, 2.5 m depth)

- Reduced leakage effect for longer HCAL
- Energy resolution of $\sim 5\%$ could be reached for laterally contained showers at hadron energies of 100 GeV with 100-layer W-AHCAL
- Additional studies for TeV particles and realistic detector layout needed

Eva Sicking (CERN)

CALICE scintillator tungsten HCAL

Extrapolation to SAS

Lateral containment of hadron showers

- Which detector size is needed to laterally contain hadron shower?
- R_{90} : Radius containing 90% of shower energy

- Hadron showers slightly more collimated at higher energies
- W-AHCAL with 40 cm lateral dimensions would contain 90% of the shower energy, if the hadron hits centrally
- Additional studies for TeV particles and realistic detector layout needed

Eva Sicking (CERN)

Summary

Summary

- Analysis of test beam data of W-AHCAL arXiv:1509.00617 [physics.ins-det]
 - e⁺, π^+ , K⁺, and p at $p_{\mathsf{beam}} = 15\,\mathsf{GeV}\text{--}150\,\mathsf{GeV}$
- Study of response, energy resolution, and shower shapes
 - Response is linear
 - $\bullet\,$ Response is similar for e^+, $\pi^+,\, K^+,\, \text{and}\,\, p$ up to 60 GeV
 - Energy resolution:

e⁺:
$$a = (29.5 \pm 0.4) \,\% \sqrt{{
m GeV}}$$

$$\pi^+$$
: $a = (57.9 \pm 1.1) \,\% \sqrt{\text{GeV}}$

p:
$$a = (60.7 \pm 1.2) \% \sqrt{\text{GeV}}$$

- Comparison to Geant4
 - High Precision neutron tracking needed for tungsten simulation
 - Agreement between data and Geant4 lists on percent level for average shower properties, within 15% or better for spatial shower profiles
 - FTFP_BERT_HP better than QGSP_BERT_HP for all observables except E_{vis}
- High granularity calorimetry and W-AHCAL are interesting option for SAS

Backup

Number of events after selection

Backup

Event displays

Scintillator tile and SiPM

Comparison with Geant4 Simulations

- Comparison of test beam data with Geant4 simulations
- Test various physics models combined to so-called physics lists
- Three example physics lists

Detector simulations

